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Abstract: 
The development of artificial intelligence (AI) technologies 

for reasoning based on big data is rapidly advancing day by day. 

Moving beyond large language models (LLMs), recent 

technological trends show the emergence of large vision models 

(LVMs), indicating that the application scope of AI is expanding 

at an accelerated pace. Currently, most AI services are 

implemented through software technologies. However, from the 

perspective of energy saving and environmental pollution, it is a 

crucial turning point where a shift to hardware-oriented AI 

technology must take place. Hardware-oriented AI aims to move 

away from the conventional series high-speed operation, 

towards low-power computing technologies that maximize 

computational concurrency. In order to achieve this goal, 

changes in computing architecture are necessary, with 

semiconductor memory technology playing a central role. 

Simultaneously, recent research indicates that high-speed, 

large-scale computation systems naturally lead to increased 

system temperatures, which can produce gases harmful to 

human health. Although these goals differ in terms of the 

original starting points, all these technological objectives share a 

common aim of low-power and small-number computing. This 

paper examines next-generation AI computing technologies 

based on large-capacity memory technologies, specifically 

dynamic random-access memory (DRAM) and flash memories 

built on relatively mature Si fabrication processing suitable for 

chip production, evaluating pattern recognition accuracies.   
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1. Introduction 

The advancement of semiconductor devices is driven by 

the quest for faster, more efficient computers that enhance 

everyday life. This progress has largely depended on logic 

devices shrinking through technology nodes, enabling 

high-speed and low-power operations [1]. While lighter, 

faster processors remain paramount, the exponential growth 

of data demands innovative solutions beyond traditional 

serial communication and processing [2]. Challenges such as 

inherent logic switching delays [3], resistance-capacitance 

(RC) delay in metallic interconnects [4], and communication 

bottlenecks between logic and memory limit performance [5]. 

Controlling the first two is constrained by physical and 

fabrication limits, but reducing communication latency 

remains possible through novel devices and architectures that 

maximize computing concurrency. Consequently, 

semiconductor memories, once secondary to processor 

developments, are now moving to the center of future 

computer architectures [6]. It is anticipated that the 

hardware-oriented artificial intelligence (AI) will play a 

crucial role in alleviating environmental stressors, thereby 

supporting the dignity of human life. This paper explores the 

pivotal roles and requirements of semiconductor memories in 

the hardware-oriented AIs in neuromorphic systems and 

processing-in-memory (PIM). 

2. Hardware-Oriented AI with Si Memories 

While various approaches exist, implementing neurons 

as integrated circuits and synapses with high-density memory 

is the most practical combination for the physical realization 

of hardware AI [7]. It is because of the fact that neurons 

require nonlinear signal processing and high current-handling 

capabilities, while synapses must store a huge number of 

parameters, making high-density memory advantageous. Also, 

to build AI systems in chips, highly matured Si technology is 

essential. Therefore, hardware-oriented AI is intrinsically 

linked to Si memories, with dynamic random-access memory 

(DRAM) and flash memory serving as prominent options. 
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FIGURE 1. 2T DRAM operation characteristics. (a) Memory operation 

mode (binary) and (b) synaptic device operation mode with multiple weights. 

2.1. Hardware-Oriented AI with DRAM Technology 

Previously, neuromorphic chips with fully compatible 

with Si CMOS processing were primarily implemented by 

static random-access memory (SRAM) for synapses. While 

Ai has predominantly advanced through software, machine 

learning—especially deep neural networks (DNNs)—requires 

large datasets. To succeed as hardware neuromorphic systems, 

synaptic devices must scale to high-density arrays. However, 

bulky SRAMs, composed of six transistors, are impractical 

for this purpose [8,9], limiting applications [10]. In contrast, 

DRAM, a volatile memory with higher cell scalability, has 

recently gained attention as a potential synaptic device. 

Studies with recency show suitability of DRAM for 

accelerators in convolutional neural networks (CNN) and 

recurrent neural networks (RNN) due to its area and cost 

efficiencies [11]. Notably, even in CNN architecture using 

 

FIGURE 2. Pattern recognition capability over time of an IGZO 2T DRAM. 

DRAM, the memory is primarily used for storing compressed 

feature maps and kernels, not for synaptic computation [11]. 

Until recent dates, DRAM has not been widely adopted in 

neuromorphic computing largely due to its requirement for 

periodic refresh operations and destructive read (inference) 

operations. Since neuromorphic architectures prioritize 

energy efficiency and massive parallelism for large-scale data 

processing, the time and bandwidth loss associated with 

DRAM refresh can pose serious limitations. Recently, a novel 

DRAM cell featuring two independent MOSFETs without a 

capacitor has been developed [12,13]. One MOSFET (write 

transistor) manages learning functions (potentiation and 

depression), while the other one (read transistor) 

independently handles inference, enabling non-destructive 

operation and significantly improved data retention. Fig. 1(a) 

shows the binary operation with a properly high operation 

voltage on the two-transistor (2T) DRAM cell. There is no 

intermediate state between two read current levels. On the 

other hand, as can be confirmed by Fig. 1(b), 2T DRAM cell 

can perform synaptic functions of learning with 16-level 

(4-bit) resolutions or electrical weights [12]. This dual-mode 

operation might allow the cell to function either as a standard 

DRAM or as a synaptic device for neuromorphic applications, 

depending on the programming voltage. One weak point of a 

DRAM cell is there is much room to improve data retention. 

With the genuinely existing issue of retention loss, the 

memory bandwidth is shrunken. This can be also a 

technological limit in neuromorphic or processing-in-memory 

(PIM) applications since the learning (program and erase 

operations) and inference (read operation) events are required 

to take place more frequently in the data-intensive operations 

in the AI chip. Thus, the great deal of effort has been 

dedicated to elongation of retention time. It was recently 

reported that introducing indium-gallium-zinc-oxide (IGZO) 

as the channel material of the write transistor and a long 

retention time of 25 in pattern recognition was reached (Fig. 

2) [14]. 



 

 

 

FIGURE 3. Transfer characteristics of a CTF synaptic device with poly-Si 

channel. The on-state current is in the order of microamperes per unit width.  

2.2. Low-Power Inference in Charge-Trap Flash (CTF) 

Although SRAM and DRAM currently serve as weight 

storage media, essentially functioning as synapses, for 

hardware-oriented AI inference operations, the number of 

synapses corresponds to the number of AI parameters, 

making it advantageous to implement the synapses using 

high-density memory technologies. From this perspective, 

among the commercially available Si-based memory 

technologies, charge-trap flash (CTF) is the most strategic for 

implementation of hardware AI chip [15]. However, its rather 

slow program and erase operations realized by 

Fowler-Nordheim (FN) tunneling, the practical memory 

bandwidth is reduced and the maximal operation concurrency 

is substantially threatened. Also, the high operation voltages 

of CTF calls for the complicated peripheral circuits. As a 

result, speed and area efficiencies need to be improved for 

flash technology to actively come to presence in realizing the 

hardware-oriented AI chip. The CTF cell is typically 

fabricated with a structure that includes a poly-Si channel. 

The primary advantage of using poly-Si instead of crystalline 

Si for the channel is the strong potential for low-power 

operation. As shown in Fig. 3, CTF synaptic devices 

fabricated in a previous study conduct currents on the order 

of several microamperes per unit channel width [16]. 

Considering that the International Roadmap for Devices and 

Systems (IRDS) suggests that a transistor with a current of 1 

mA/μm could serve as a threshold between high-performance 

(HP) and low-power (LP) classifications [17], it is explicitly 

revealed that the current levels observed in the fabricated 

CTF cell fall within the low-power electronic device domain.  

 

FIGURE 4. Test accuracy as a function of number of epochs. (inset: 

accuracy drop caused by cycle-to-cycle weight variation of a CTF synapse) 

Fig. 4 presents the results of simulations performed at a 

higher level using key operational parameters extracted at the 

cell level from the fabricated CTF synaptic device [16]. The 

simulation evaluates the pattern recognition accuracy of a 

presumable AI chip when an array composed of the 

fabricated CTF synapses is integrated into it. Fig. 4 shows the 

test accuracy as a function of number of epochs and it is 

encouraging to observe that the accuracy reaches about 85% 

(5% below compared with the purely software-based test) at a 

number of epochs above 50. The inset depicts test accuracy 

as a function of cycle-to-cycle variation in synaptic weight 

(electrical conductance) of the fabricated CTF cell. Although 

cell-to-cell conductance variation in flash memory based on 

Si processing is relatively smaller compared with other 

emerging nonvolatile memories, a deliberately large variation 

was assumed in the simulation works above. As one might 

expect, if the variation in the targeted weight values during 

repeated synaptic device operations is significant, the pattern 

recognition accuracy shows a rapid monotonic decrease. 

While minimizing cell-to-cell and cycle-to-cycle variations is 

fundamentally important, it becomes even more critical in 

hardware-oriented AI applications than in the conventional 

electronic systems. If the inference voltage can be increased, 

thereby raising the level of inference current, the relative 

magnitude of the variation decreases. Therefore, using a 

sufficiently high inference voltage would be beneficial. From 

this perspective, it is revealed by the inset that inference 

energy efficiency and learning accuracy are in a trade-off 

relation. Thus, from a system-level operation standpoint, it 

would be desirable to devise a smart operation scheme in 

parallel that balances these aspects effectively.  



 

 

3. Low-Compute Hardware AI for Environment 

As semiconductor devices continue to be miniaturized to 

achieve higher computational speeds, concerns have emerged 

regarding the environmental impact of such advanced 

electronics. One particularly alarming issue is the potential 

release of harmful gases from computers operating 

high-speed, ultra-scaled AI hardware based on the highly 

scaled transistors in the conventional architecture. These 

emissions are not generated by the transistors themselves 

during normal operation, but rather as a consequence of 

excessive heat buildup, material degradation, and outgassing 

from components such as printed circuit boards (PCBs), 

thermal interface materials, and packaging polymers. When 

devices operate under extreme thermal and electrical stress 

(conditions common in densely packed AI accelerators) 

certain volatile organic compounds (VOCs) or fluorinated 

gases used in manufacturing or thermal control can be 

released into the surrounding environment. This highlights an 

often-overlooked environmental cost of sustaining ever-faster, 

high-power computational loads [18]. In light of this, 

next-generation computing technologies stated in the 

previous chapters and those viewed from an environmental 

perspective may have different motivations, but they share 

the same overarching goal. Alternative computing paradigms 

such as neuromorphic computing and PIM offer a more 

sustainable path forward. These architectures fundamentally 

deviate from the traditional von Neumann architecture, which 

is heavily reliant on sequential processing and frequent data 

shuttling between processor and memory domains – a process 

that contributed significantly to energy consumption. Instead, 

hardware-oriented AI systems in the neuromorphic and PIM 

approaches prioritize parallelism and local computation, 

enabling a large number of low-power operations to be 

performed simultaneously and reducing the need for constant 

data traffic. Rather than maximizing the number of operations 

per second at all costs, shifting towards low-compute and 

extremely parallel architectures not only align better with the 

energy constraints of real-world AI deployment but also 

mitigates environmental impact. As such, contemplating the 

hardware-oriented AI from an ecological perspective may be 

more crucial than advancing its computational capabilities.  

4. Conclusion 

In this study, the limitations of traditional von Neumann 

architectures, particularly RC delays, logic switching latency, 

and memory bottlenecks, are addressed through emerging 

hardware-oriented AI approaches such as neuromorphic 

computing and PIM. These paradigms leverage Si-based 

memories, DRAM and flash, not just for storage but also for 

active involvement into actual computation. Novel 2T 

DRAM designs with IGZO channels show promising results, 

achieving up to 25 seconds of data retention and enabling 

4-bit synaptic weight resolution. CTF memory, offering 

ultra-low-power inference operation (<1 µA/µm), achieves 

~85% pattern recognition accuracy after 50 training epochs, 

though performance is sensitive to synaptic variation. 

Environmentally, these architectures present a sustainable 

alternative to heat-intensive and highly-scaled processors, 

which risk releasing harmful gases. By embracing parallel 

and low-compute designs, hardware-oriented AI chip meets 

both technological and ecological goals. It is highlighted that 

The future of AI lies not in maximizing raw speed but in 

designing smarter and energy-conscious architecture that 

harmonize performance with planetary human health.  
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