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Abstract:
Few-shot remote sensing scene classification (FSRSSC)

tackles the challenge of recognizing novel scene categories
with only a limited number of labeled examples, which heavily
relies on pre-trained transferable deep representations. Recent
advances have widely explored contrastive learning to improve
global feature representations for this task. However, we argue
that global feature representations often fail to capture the
fine-grained local features crucial for distinguishing remote
sensing scenes, which typically include numerous small-scale,
densely distributed objects. To address this limitation, we
propose Dense Supervised Contrastive Learning (DSCL),
which applies supervised contrastive learning at the patch
level to improve local feature discriminability. By optimizing
a dense pairwise similarity loss across local patches, DSCL
significantly boosts generalization in few-shot scenarios. Ex-
periments on three benchmark datasets (UCM, WHU-RS19,
and NWPU-RESISC45) demonstrate that DSCL achieves
competitive performance compared to recent state-of-the-art
methods in both 5-way 1-shot and 5-shot settings, highlight-
ing the potential of local-level feature learning for FSRSSC.
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1 Introduction

Scene classification is a fundamental task in remote sens-
ing image analysis [?], which aims to categorize remote
sensing images into predefined semantic classes based on
their visual content. Remote sensing scene classification
(RSSC) has a wide range of applications, including land
use mapping [?], environmental monitoring, and disaster
assessment.

Traditional RSSC methods rely on hand-crafted fea-
tures such as Histograms of Oriented Gradients (HOG) [?].
With the development of deep learning, convolutional neu-
ral networks (CNNs) [?] have significantly improved RSSC
performance [?]. However, training deep CNNs requires a
substantial amount of labeled data, and obtaining enough
annotated remote sensing data is frequently impractical
due to the high costs associated with data acquisition and
labeling.

This limitation has led to increasing interest in few-shot
remote sensing scene classification (FSRSSC), which aims
to recognize novel scene categories from only a few la-
beled examples. Training CNNs with only limited samples
is prone to overfitting. Current FSRSSC methods adopt
the transfer learning paradigm [?], typically including two
stages: (1) meta-training, where models learn transfer-
able knowledge from base classes, and (2) meta-testing,
where the learned knowledge is adapted to recognize novel
classes using a small support set. The effectiveness of this
paradigm heavily depends on the transferability of the
learned representations [?]. Moreover, FSRSSC encoun-
ters additional challenges beyond general few-shot learn-
ing (FSL) due to the unique characteristics of remote sens-
ing imagery, such as high intra-class variation and inter-
class similarity [?], which stem from overhead imaging per-
spectives and the complex coexistence of multiple ground
objects.

Recent state-of-the-art methods have widely adopted
contrastive learning to enhance feature transferability for
FSRSSC. For instance, SCL-MLNet [?] incorporates self-
supervised contrastive learning as an auxiliary task to
improve representation quality. TSC [?] employs a task-
specific contrastive loss within each episode to strengthen
meta-learning. Foreground-background contrastive learn-
ing [?] explicitly separates foreground and background re-



gions to enhance feature discrimination. MPCL-Net [?]
proposes a multi-pretext prototype-guided contrastive
framework that jointly optimizes multiple pretext tasks for
representation learning. DCN [?] proposes dual-branch su-
pervised contrastive learning to capture both contextual
and fine-grained features. ACL-Net [?] integrates a mutual
attention mechanism with a dictionary-based contrastive
loss to improve feature representation learning.

Farmland Chaparral Parking lot Harbor

Figure 1. Many remote sensing scene images are made up of
dense discriminative objects

Despite recent advances, most methods rely on global
features, which often overlook the fine-grained local details
crucial for distinguishing remote sensing scenes. Unlike
natural images, remote sensing imagery typically contains
many small, densely packed objects tied to scene semantics.
As shown in Figure 1, these localized cues play a key role
in accurate classification. We argue that improving local
feature discriminability is beneficial to FSRSSC. To this
end, we propose Dense Supervised Contrastive Learning
(DSCL), a novel framework specifically designed to learn
effective representations for remote sensing imagery char-
acterized by densely distributed objects. DSCL builds on
the supervised contrastive learning paradigm [?] by opti-
mizing a patch-wise contrastive loss over all local features
in the augmented batch. It constructs positive pairs be-
tween local features of the same class, while all patches
from different classes are regarded as negatives. This for-
mulation encourages representations of semantically simi-
lar regions to cluster together while separating dissimilar
ones, thereby enhancing local feature discrimination. Dur-
ing meta-testing, we train a linear classifier on the aggre-
gated dense features from the support set, and obtain the
final prediction for each query sample by ensembling its
patch-wise logits.

Our contributions are summarized as follows: (1) We
propose DSCL, a dense supervised contrastive learning
framework that improves local feature discrimination by
a patch-level contrastive loss, specifically designed for
FSRSSC. (2) We conduct extensive experiments on three
benchmark datasets, demonstrating that DSCL achieves
competitive performance compared to recent state-of-the-

art FSRSSC methods.

2 Method

2.1 Task Formulation

Few-shot remote sensing scene classification (FSRSSC)
aims to generalize knowledge learned from base classes
to recognize novel scene categories in a previously un-
seen domain. This problem is commonly formulated
from the perspective of inductive transfer learning and
consists of two primary stages: meta-training and meta-
testing. Formally, the meta-training dataset is denoted as
Db = {(x, y)} ⊂ Xb × Yb, where x represents a remote
sensing image and y denotes its corresponding scene class
label. FSL algorithms aim to extract generalizable and
transferable knowledge from the Db based on deep neu-
ral networks. In the meta-testing stage, the pre-trained
model is adapted to a novel few-shot classification task
using a small support set S, which is sampled from a tar-
get domain Dn = {(x, y)} ⊂ Xn × Yn. The support set
S contains N distinct classes, each with K labeled exam-
ples, i.e., S = {Si}Ni=1 with |Si| = K, and this setting is
referred to as an “N-way K-shot” classification task. No-
tably, there is no class overlap between the meta-training
and meta-testing sets, i.e., Yb ∩ Yn = ∅. Once the model
has been adapted to the support set, its performance is
evaluated on a query set Q, which contains unseen sam-
ples from the same novel classes as in S. The goal is to
evaluate the generalization ability of the model to novel
categories using only a few labeled examples.

Conventional approaches to FSRSSC mainly focus on
learning general-purpose features. In line with this, we
aim to train a feature extractor F , parameterized by θ,
using an enhanced contrastive learning method. Given
an input image x, the model produces a feature repre-
sentation F (x) that is both semantically meaningful and
transferable. A desirable representation in this context
enables robust classification of novel remote sensing scene
categories, especially under few-shot settings.

2.2 Supervised Contrastive Learning Revisit

Contrastive learning is a widely adopted method for rep-
resentation learning and has proven effective in enhancing
the feature extraction capabilities of deep neural networks.
The core idea is to learn an encoder that maps similar (pos-
itive) pairs close together in the embedding space while
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Figure 2. Framwork of Dense Supervised Contrastive Learning

pushing dissimilar (negative) pairs farther apart. While
most prior works focus on self-supervised contrastive learn-
ing, which learns from unlabeled data through instance dis-
crimination [?,?], supervised contrastive learning (SCL) [?]
leverages label information to encourage representations of
samples from the same class to be closer together, while
pushing apart those from different classes. We briefly re-
visit the supervised contrastive learning framework, which
we later extend for dense scene representation learning.

Given a batch of labeled training data {xi, yi}Ni=1, we
apply data augmentation to generate two views per sam-
ple, resulting in a multiviewed batch {x̃j , ỹj}2Nj=1, where
{x̃2i−1, x̃2i} are two random augmentations of xi, and
ỹ2i−1 = ỹ2i = yi. Each augmented image x̃ is passed
through an encoder network F (·) to obtain a feature
representation r = F (x̃) ∈ RD. This representation
is further mapped by a projection head Proj(·), imple-
mented as a two-layer MLP with a ReLU activation in
between, producing the embedding z = Proj(r) ∈ RD

for contrastive learning. To compute the contrastive loss,
we define I ≡ {1, · · · , 2N} as the index set of the aug-
mented batch. For each anchor sample i ∈ I, the positive
set P(i) includes all other samples with the same label
(P(i) ≡ {p ∈ I : yp = yi} \ {i}), and the negative set
N (i) includes those with different labels. The supervised
contrastive loss is defined as:

Lsup =
1

|I|
∑
i∈I

1

|P(i)|
∑

p∈P(i)

− log P̂i , (1)

P̂i =
exp (cos(zi, zp)/τ)

exp (cos(zi, zp)/τ) +
∑

a∈N (i)

exp (cos(zi, za)/τ)
, (2)

where cos(·, ·) denotes the cosine similarity between two

vectors, and τ is a temperature scaling parameter.
After training, the encoder F (·) is retained for down-

stream tasks, while the projection head Proj(·) is dis-
carded. In this paper, we aim to expand the supervised
contrastive learning framework to develop dense represen-
tations that are more appropriate for remote sensing scene
classification.

2.3 Dense Supervised Contrastive Learning

While conventional supervised contrastive learning fo-
cuses on global image-level features, it falls short in remote
sensing scenarios where critical discriminative cues often
reside in small-scale, densely packed local regions. To bet-
ter capture such local semantics, we propose Dense Super-
vised Contrastive Learning (DSCL), which extends super-
vised contrastive learning to the patch (or spatial) level,
enabling fine-grained representation learning for FSRSSC,
as illustrated in Figure 2.

Given an input image x, similar to global SCL, random
data augmentation is first applied to obtain two views
x̃1 and x̃2. Each augmented view is passed through a
shared feature extractor F (·), yielding dense feature maps
R1 = F (x̃1) ∈ RH×W×D and R2 = F (x̃2) ∈ RH×W×D,
where H and W denote the spatial dimensions and D is the
channel dimension. We treat each spatial location (patch)
in the two feature maps as an individual unit of the same
class for dense contrastive learning. To this end, we apply
a spatially shared projection head Proj(·) to each embed-
ding vector rij ∈ RD at location (i, j), producing projected
vectors zij = Proj(rij) ∈ RD.

Given a batch of N images and their augmented views,
we collect all spatial patch-level vectors across all views



and construct positive pairs between corresponding spatial
locations of the same class, while treating all patches from
different classes as negatives. To compute the contrastive
loss, we define U ≡ {1, · · · , 2N ∗H ∗W} as the index set of
all local embedding. Formally, for a local patch embedding
zu with label yu, we define its positive set P(u) = {v ∈
U : yv = yu ∧ v ̸= u} and its negative set N (u) = {v ∈
U : yv ̸= yu}. The dense supervised contrastive loss is
computed as:

Ldense =
1

|U |
∑
u∈U

1

|P(u)|
∑

v∈P(u)

− log P̂u , (3)

P̂u =
exp (cos(zu, zv)/τ)

exp (cos(zu, zv)/τ) +
∑

w∈N (u)

exp (cos(zu, zw)/τ)
,

(4)
where U indexes all spatial positions across the augmented
batch, and τ is the temperature hyperparameter as in
Eq. (2).

This dense contrastive formulation encourages the net-
work to learn discriminative and invariant local represen-
tations that generalize better in few-shot settings, particu-
larly for remote sensing imagery with dense discriminative
objects.

During meta-testing, we discard the projection head and
use the trained backbone F (·) to extract dense features
for both support and query images. The dense features
aggregated from the support set are used to train a linear
classifier. The final prediction for each query image is
obtained by ensembling its patch-wise logits.

3 Experimental Results

3.1 Benchmark Datasets

Following recent studies, we evaluate our method
on three widely used remote sensing scene classi-
fication benchmark datasets: UC Merced LandUse
(UCM) [?], WHU-RS19 (WHURS [?], and NWPU-
RESISC45 (NWPU) [?]. The class splits for few-shot learn-
ing are as follows:

UCM [?] contains 2,100 images across 21 scene cate-
gories. Following prior work [?, ?], we use 10 classes for
training, 6 classes for validation, and 5 classes for testing.

WHURS [?] includes 1,005 images from 19 categories.
Following prior work [?], we use 9 classes for training, 5
classes for validation, and 5 classes for testing.

NWPU [?] consists of 31,500 images covering 45 cate-
gories, with 700 images per class. Following [?, ?], we use
25 classes for training, 10 classes for validation, and 10
classes for testing.

3.2 Implementation Details

Model Structure. Following prior methods [?,?,?,?], we
adopt ResNet12 [?] as the feature extraction backbone for
all experiments. ResNet12 is a variant of residual networks
tailored for FSL tasks. It consists of four residual blocks,
each comprising three convolutional layers and one 2 × 2
max-pooling layer. All convolutional layers use 3 × 3 ker-
nels, followed by batch normalization and a Leaky ReLU
activation with a negative slope of 0.1. The output chan-
nels of the four blocks are 64, 160, 320, and 640, respec-
tively. Given an input image of size 3 × 84 × 84, the
network produces a feature map of size 640 × 5 × 5. On
top of the backbone, we attach a 2-layer multi-layer per-
ceptron (MLP) with a ReLU activation in between as the
projection head, which maps the local CNN features to a
640-dimensional contrastive space.

Training Details. During meta-training, we optimize
the model using SGD with Nesterov momentum of 0.9
and apply a weight decay of 1 × 10−4 to all parameters.
The ResNet12 backbone is first pre-trained using a stan-
dard cross-entropy loss on the training set for initialization.
Subsequently, the model is trained with DSCL for 300
epochs on UCM and WHURS, and 30 epochs on NWPU,
using an initial learning rate of 0.01, which decays by a fac-
tor of 0.5 every one-third of the total epochs. We adopt
the data augmentation strategies from [?], including ran-
dom resized cropping, horizontal flipping, color jittering,
and random rotation. The temperature parameter τ in
the contrastive loss is set to 0.07.

Evaluation Protocol. We evaluate our model on 5-way
1-shot and 5-way 5-shot classification tasks, following the
standard FSL protocol [?]. Each testing task contains 15
query samples per class. We sample 2,000 tasks from the
novel classes for testing and report the mean classification
accuracy along with the 95% confidence interval across all
tasks as the result.

3.3 Results

The comparison of different methods on three widely
used benchmark datasets (UCM, WHU-RS19, and
NWPU-RESISC45) under the 5-way 1-shot and 5-way 5-
shot settings is shown in Table 1. Our proposed method,



Table 1. Few-shot remote sensing scene classification results on UCM, WHURS, NWPU datasets.

Methods UCM WHURS NWPU
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MAML [?] 48.94 ± 0.31 60.61 ± 0.29 50.87 ± 0.23 64.26 ± 0.32 48.04 ± 0.21 62.98 ± 0.47
Meta-SGD [?] 51.13 ± 0.95 63.68 ± 0.59 51.78 ± 1.05 65.47 ± 0.65 40.96 ± 0.08 47.46 ± 0.37

MatchingNet [?] 34.68 ± 0.91 53.34 ± 0.17 51.25 ± 0.61 54.36 ± 0.38 40.31 ± 0.13 47.27 ± 0.28
ProtoNet [?] 52.34 ± 0.19 69.28 ± 0.67 58.17 ± 0.56 80.54 ± 0.42 41.38 ± 0.26 62.77 ± 0.14

RelationNet [?] 48.48± 0.75 62.17± 0.33 61.74± 0.51 79.15± 0.35 66.21± 0.28 78.37± 0.28
TPN [?] 53.36 ± 0.77 68.23 ± 0.52 66.51 ± 0.87 78.50 ± 0.56 66.51 ± 0.87 78.50 ± 0.56

DLA-Match [?] 53.76 ± 0.62 63.01 ± 0.51 68.27 ± 1.83 79.89 ± 0.33 68.80 ± 0.70 81.63 ± 0.46
SCL-MLNet [?] 51.37 ± 0.79 68.09 ± 0.92 63.36 ± 0.88 77.62 ± 0.81 62.21 ± 1.12 80.86 ± 0.76

SPNet [?] 57.64 ± 0.73 73.52 ± 0.51 81.06 ± 0.60 88.04 ± 0.28 67.84 ± 0.87 83.94 ± 0.50
TSC [?] 55.11 ± 0.68 69.20 ± 0.64 70.99 ± 0.74 82.18 ± 0.32 73.26 ± 0.15 84.62 ± 0.35
S2M2 [?] 56.42 ± 0.40 71.97 ± 0.27 69.00 ± 0.41 82.14 ± 0.21 63.24 ± 0.47 83.23 ± 0.28

MPCL-Net [?] 56.46± 0.21 76.57± 0.07 61.84± 0.12 80.34± 0.54 55.94± 0.04 76.24± 0.12
DCN [?] 58.64± 0.71 76.61± 0.49 81.74± 0.55 91.67± 0.25 74.40± 0.78 89.22± 0.41
FBCL [?] 58.45± 0.74 74.59± 0.59 - - 75.35 ± 0.82 88.90 ± 0.41

ACL-Net [?] 59.74± 0.46 74.89± 0.29 78.30± 0.32 90.43± 0.15 76.13 ± 0.24 86.54± 0.23

DSCL (ours) 63.63 ± 0.38 81.35 ± 0.24 86.19 ± 0.30 95.06 ± 0.11 73.81 ± 0.44 89.57 ± 0.22

DSCL, can achieve competitive performance compared to
state-of-the-art approaches in both settings, demonstrat-
ing strong generalization capabilities for FSRSSC.

Comparison with conventional few-shot learning meth-
ods. Traditional FSL methods are primarily meta-learning
based, including MAML [?], Meta-SGD [?], Match-
ingNet [?], ProtoNet [?], and RelationNet [?]. These
approaches generally perform suboptimally across all
datasets. For example, ProtoNet achieves only 52.34% (1-
shot) and 69.28% (5-shot) on UCM, while DSCL achieves
63.63% and 81.35%, yielding improvements of 11.3% and
12.1%, respectively. These results indicate the limitations
of early FSL methods in capturing the complex semantics
of remote sensing scenes. SPNet [?], an enhanced version
of ProtoNet with self- and inter-calibration mechanisms,
also underperforms compared to DSCL.

Comparison with contrastive learning-based methods.
Recent works have widely adopted contrastive learning to
enhance feature representations, leading to notable perfor-
mance gains for FSRSSC. For example, SCL-MLNet [?] in-
corporates self-supervised contrastive learning as an aux-
iliary task. TSC [?] introduces task-specific contrastive
losses within episodes. MPCL-Net [?] proposes a multi-
pretext prototype-guided contrastive framework. DCN [?]
employs a dual-branch design to capture both contextual

and detailed features using supervised contrastive learning.
Foreground-background contrastive learning [?] separates
discriminative regions to improve representation learning.
ACL-Net [?] incorporates a hybrid attention module and
a dictionary-based contrastive loss.

Despite these advancements, DSCL achieves superior re-
sults, particularly on the UCM and WHURS datasets. On
UCM, DSCL outperforms the next-best method by 3.9%
in the 1-shot setting and 4.7% in the 5-shot setting. On
WHURS, it surpasses DCN by 4.5% (1-shot) and 3.4% (5-
shot). On NWPU, DSCL achieves the best performance
in the 5-shot setting and remains competitive in the 1-shot
setting. In addition to its strong performance, our model,
built on the original ResNet12 backbone for FSL, is also
more efficient than existing methods. Most competing ap-
proaches introduce additional parametric components into
the feature extractor, such as attention modules [?,?,?,?,?],
to enhance feature learning. Finally, DSCL significantly
outperforms earlier methods such as [?, ?, ?], further vali-
dating the effectiveness of our approach.

4 Conclusion

This paper proposes Dense Supervised Contrastive
Learning (DSCL) for FSRSSC. Unlike existing methods



that primarily rely on global features, DSCL applies su-
pervised contrastive learning at the patch level to enhance
the discriminability of local features. This approach is
motivated by the unique characteristics of remote sensing
imagery, which often includes numerous small, densely
distributed, and discriminative objects. Experiments on
three standard benchmark datasets (UCM, WHU-RS19,
and NWPU-RESISC45) demonstrate that DSCL achieves
competitive performance compared to recent state-of-the-
art methods, validating the effectiveness of local-level con-
trastive learning for FSRSSC. DSCL offers a promising al-
ternative and highlights the advantages of strengthening
local representation learning in this domain. Future work
may explore the integration of multi-scale features to fur-
ther improve generalization in more challenging few-shot
scenarios.


