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Abstract:
Traditional multi-label learning methods often rely on ex-

plicit logical labels, making it difficult to uncover the latent
label structures hidden within the data, which in limited learn-
ing effectiveness. To enhance the representation capacity of
sample-label relationships in multi-label learning, this work in-
troduces a concept analysis approach to discover the implicit
label distribution information underlying the observable labels,
thereby enriching the original label representation. Specifi-
cally, concept cognitive learning is employed to model the in-
trinsic associations between samples and labels, resulting in the
construction of a label distribution matrix that captures label
distribution characteristics. This matrix, combined with label
correlations, is then used to impose constraints on the objec-
tive function during the learning process, ultimately improving
the performance of multi-label learning.
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1. Introduction

Traditional supervised learning methods typically only
allow for assigning a single label to each sample, ignoring
the reality that samples may be associated with multi-
ple labels simultaneously. Multi-label learning models the
complex dependencies between samples and multiple la-
bels, offering a more accurate representation of the rich
and diverse semantic structures found in real-world data
[1, 2]. Therefore, multi-label learning has become an im-
portant research direction for dealing with complex real-
world data, and it has been widely applied in areas such
as image annotation, text classification and so on.

In the research of multi-label learning, label enhance-

ment has become an important issue. Its goal is to recon-
struct a more detailed and continuous label distribution
in the case of only logical labels, so that the label distribu-
tion learning method can play a role in data sets lacking
clear distribution information [3, 4]. The existing label
enhancement methods are mainly divided into two cate-
gories: adaptive and specialized algorithms. The adaptive
algorithm is an extension and improvement based on the
original learning model. A current research hotspot is to
introduce fuzzy mathematics into label enhancement, us-
ing methods such as fuzzy clustering, fuzzy computation,
and fuzzy association analysis to transform discrete logical
labels into more expressive label distributions. In contrast,
specialized algorithms often adopt graph-based strategies
to construct topological structures among samples. These
approaches exploit structural assumptions to model latent
relationships between samples and labels. By explicitly
representing the structural information in feature space,
they help uncover deeper semantic associations between
labels. Regardless of the approach, effectively converting
logical labels into soft label distributions fundamentally
depends on exploring the structural properties of the fea-
ture space. Analyzing the hierarchical relationships be-
tween samples provides essential support for semantic as-
sociation modeling and label distribution construction.

To improve the quality of label enhancement, this pa-
per introduces Concept-Cognitive Learning (CCL) as a
framework for knowledge modeling. CCL is an effective
cognitive tool that simulates human learning processes by
acquiring concepts and uncovering the hierarchical struc-
tures among them [5]. This makes complex knowledge
easier to understand and apply. In CCL, each concept
consists of two core components: extent and intent, which
are mutually determined and form the basic semantic unit.
In knowledge representation, the involution relationship



between the intent and extent of the concept effectively re-
veals the internal structure of knowledge [6, 7]. In recent
years, benefiting from the advantages of CCL in struc-
tural modeling and semantic expression, researchers have
attempted to introduce it into multi-label learning and de-
veloped various concept-cognitive learning models [8, 9].
However, most of the existing methods still remain in the
modeling of explicit logical labels, and the potential se-
mantic information of labels has not been fully explored.
To address this gap, we propose a CCL-based label en-
hancement method. By leveraging concept analysis to
extract hierarchical structure from the feature space, the
proposed method facilitates the transformation of logical
labels into continuous numerical representations. This
not only enhances the expressiveness of labels but also
improves the overall performance of multi-label learning
models.

The remainder of this paper is organized as follows. In
Section 2, we briefly review label distribution learning and
fuzzy formal concept analysis. In Section 3, we describe
the proposed method. Comparative experimental results
and analyses are presented in Section 4. Finally, Section
5 provides the conclusion.

2. Preliminaries

2.1. Label distribution learning

In multi-label learning, each instance can be associ-
ated with multiple semantic labels simultaneously. Let
the multi-label dataset be denoted as D = (xi,yi), i ∈
{1, 2, · · · , n}, where X = [x1,x2, · · · ,xn]

T ∈ Rn×m repre-
sents the feature matrix of n instances, and each instance
xi = [xi1, xi2, · · · , xim] is an m-dimensional feature vector.
The corresponding label matrix is Y = [y1,y2, · · · ,yn]

T ∈
{0, 1}n×q, where each label vector yi = [yi1, yi2, · · · , yiq]
indicates the relevance of q possible labels to the i-th in-
stance. Specifically, yij = 1 denotes that the j-th label is
relevant to the i-th instance; yij = 0 denotes that the j-th
label is not relevant to the i-th instance.

In label distribution learning, each possible label yij for
a given sample xi is assigned a continuous value, denoted
as dij , which indicates the degree to which the label de-
scribes the sample. This label distribution must satisfy
the following two conditions:
(1) dij ∈ [0, 1], meaning that the description degree for
each label lies within the interval [0, 1];
(2)

∑q
j dij = 1, ensuring that the total description degree

across all labels for a given sample sums to 1.
This formulation allows each sample to be characterized

by a complete label distribution vector rather than a set
of discrete logical labels, thereby capturing the varying
degrees of relevance between the sample and each label
more precisely.

2.2. Fuzzy formal concept analysis

A fuzzy formal context is defined as a triplet
(
U,F, Ĩ

)
,

where:

• U = {o1, o2, · · · , on} is the set of objects.

• F = {f1, f2, · · · , fm} is the set of attributes.

• Ĩ is a fuzzy relation between U and F , such that Ĩ :
U × F → [0, 1].

The fuzzy relationship Ĩ(o, f) represents the degree to
which an object o ∈ U possesses the feature f ∈ F . Let
P (U) denote the power set of U , and F (F ) denote the set
of all fuzzy subsets on F . For any f ∈ F , the membership
function F̃ (f) : F → [0, 1] indicates the degree to which
the feature f belongs to a given fuzzy subset F̃ ∈ F (F ).
For O ∈ P (U), Ã ∈ F (F ), the operators ↑: P (U) →
F (F ) and ↓: F (F )→ P (U) are defined as:

O↑ (f) =
∧
o∈O

Ĩ (o, f) , f ∈ F, (1)

Ã↓ =
{
o ∈ U

∣∣∣∀f ∈ F, Ã (f) ⩽ Ĩ (o, f)
}
. (2)

If O↑ = Ã and Ã↓ = O, then the pair
(
O, Ã

)
is called

a fuzzy concept, where O and Ã are called the extent and
intent, respectively.

3. Multi-label classification with weakly labeled data

A multi-label context can be represented by the triple
⟨U,F,D⟩, where U = {o1, o2, · · · , on} is the set of ob-
jects, F = {f1, f2, · · · , fm} is the set of attributes, and
D = (xi,yi) is the multi-label dataset. Let P(U) de-
note the power set of U . For any f ∈ F , the func-
tion F̃ (f) : F → [0, 1] represents the membership de-
gree of the attribute f in the fuzzy set F̃ , where F̃ ={
F̃ (f1) , F̃ (f2) , · · · , F̃ (fm)

}
. The set of all fuzzy sub-

sets over F is denoted by F(F ).



Given a multi-label context ⟨U,F,D⟩, for any O ∈ P(U)
and Ã ∈ F (F ), we define the operators L : P(U)→ F(F )
and G : F(F )→ P(U) as follows:

L (O) (fj) =
∧

oi∈O

xij , fj ∈ F,

G
(
Ã
)
=
{
oi ∈ U

∣∣∣∀fj ∈ F, Ã (fj) ⩽ xij

}
.

A pair
(
O, Ã

)
is called a fuzzy concept, if it satisfies

G
(
Ã
)
= O and L (O) = Ã, where O and Ã are referred

to as the extent and intent of the concept, respectively.
Clearly, the pair (GL (O) ,L (O)) constitutes a fuzzy con-
cept induced by the object set O.

For a given label index j ∈ {1, 2, · · · , q}, let O+
j =

{oi ∈ U |yij = 1} and O−
j = {oi ∈ U |yij = 0} denote the

sets of objects that are respectively relevant and irrele-
vant to the j-th label. It follows that the object set U can
be partitioned with respect to label j as O+

j ∪O
−
j = U and

O+
j ∩O

−
j = ∅. This partition forms the basis for analyzing

label-specific relevance in a multi-label learning context.
Let ⟨U,F,D⟩ be a multi-label context. For a given label

lj and its associated object sets O+
j = {oi ∈ U |yij = 1}

and O−
j = {oi ∈ U |yij = 0}, the positive concept space

and negative concept space of label lj are defined as fol-
lows:

S+j =
{
(GL (o) ,L (o))

∣∣o ∈ O+
j

}
,

S−j =
{
(GL (o) ,L (o))

∣∣o ∈ O−
j

}
.

Here, each pair (GL (o) ,L (o)) represents a fuzzy con-
cept induced by object o ∈ U . The set S+j collects all such
fuzzy concepts corresponding to objects positively associ-
ated with label lj , while S−j collects those corresponding
to negatively associated objects.

Given a multi-label context ⟨U,F,D⟩, let S+j and S−j
denote the positive and negative concept spaces of label
lj , where each element is a fuzzy concept in the form(
X+

k , B̃+
k

)
∈ S+j and

(
X−

k , B̃−
k

)
∈ S−j . The overall con-

ceptual cognition for label lj is defined as two representa-
tive fuzzy concepts:
The positive cognition of label lj :

pc+j =
(
E+

j , Ĩ+j

)
;

The negative cognition of label lj :

pc−j =
(
E−

j , Ĩ−j

)
.

These are constructed based on the most representative
fuzzy concepts in S+j and S−j .
For the positive part:
Let

K+
j = arg max

k∈{1,2,··· ,|S+
j |}

∣∣X+
k

∣∣ ,
then define

(
E+

j , Ĩ+j

)
=


(
X+

k , B̃+
k

)
, if K+

j = {k} ;(⋃
k∈K+

j
X+

k , 1

|K+
j |

∑
k∈K+

j
B̃+

k

)
, if

∣∣K+
j

∣∣ > 1.

For the negative part:
Similarly, let

K−
j = arg max

k∈{1,2,··· ,|S−
j |}

∣∣X−
k

∣∣ ,
then define

(
E−

j , Ĩ−j

)
=


(
X−

k , B̃−
k

)
, if K−

j = {k} ;(⋃
k∈K−

j
X−

k , 1

|K−
j |

∑
k∈K−

j
B̃−

k

)
, if

∣∣K−
j

∣∣ > 1.

Here, E+
j and E−

j represent the aggregated object
sets (extents), while Ĩ+j and Ĩ−j are the correspond-
ing averaged fuzzy attribute sets (intents). Then,
the set of overall concepts by all labels is PC ={(

pc+1 , pc
−
1

)
,
(
pc+2 , pc

−
2

)
, · · · ,

(
pc+q , pc

−
q

)}
.

Given a multi-label context ⟨U,F,D⟩, and the over-
all conceptual cognition for each label lj denoted by(
E+

j , Ĩ+j

)
and

(
E−

j , Ĩ−j

)
, we define the distance-based la-

bel relevance for each instance as:

dij =


∥∥∥xi − Ĩ+j

∥∥∥
2

, if yij = 1;

−
∥∥∥xi − Ĩ−j

∥∥∥
2

, if yij = 0.

Let di = {di1, di2, · · · , diq} denote the collection of dis-
tances between instance xi and all concepts. To ensure
consistency and comparability across labels, these dis-
tances are normalized as:

dnormij =
dij −min (di)

max (di)−min (di)
,

d̂ij =
dnormij∑q
k=1 d

norm
ik

.

The label distribution matrix used for label enhance-
ment is then defined as:

D =
(
d̂ij

)
n×q



where each entry d̂ij represents the normalized semantic
distance between instance xi and the corresponding pos-
itive or negative fuzzy concept of label lj . This matrix
D captures the relative label distances and can serve as a
soft label distribution for further label enhancement tasks.
Based on the above basis, algorithm 1 is given.

4. Experiments

4.1. Datasets and experiment settings

To further evaluate the effectiveness of the proposed al-
gorithm, experiments were conducted on 10 publicly avail-
able multi-label datasets. The detailed characteristics of
these datasets are summarized in Table 1. Specifically, n,
m, and q denote the number of instances, features, and
labels, respectively. Additionally, ”Card” represents the
average label cardinality, while ”Domain” indicates the
type of dataset.

To assess the predictive performance of the proposed al-
gorithm, it is compared against three representative multi-
label learning methods (ML-KNN [10], MDFS [11] and
MRDM [12]).

4.2. Evaluation metrics

Evaluating performance in multi-label classification is
inherently more challenging than in traditional single-label
settings, due to the presence of multiple, potentially cor-
related labels. To effectively assess algorithm performance
in this context, four widely used evaluation metrics are em-
ployed [1]: Average Precision (AP), Coverage (CV), One-
error (OE), and Ranking Loss (RL). These metrics col-
lectively offer a comprehensive assessment of how well an
algorithm captures the complex characteristics of multi-
label data. Given a test set T = (xi, Li) | 1 ≤ i ≤ s, where
Li denotes the set of relevant labels for instance xi, and
prediction scores for all labels are sorted in descending or-
der as f1(xi), f2(xi), . . . , fq(xi), the definitions of the four
evaluation metrics are presented below:

Average Precision (AP): This metric evaluates the aver-
age likelihood that relevant labels are ranked above irrel-
evant ones. A higher average precision indicates that the
classifier is more effective at prioritizing relevant labels in
its ranking.

AP =
1

s

s∑
i=1

1

|Li|
∑

lj ,lk∈Li

|Ri|
rank (xi, lk)

.

Algorithm 1: The label distribution matrix.
Input: A multi-label context ⟨U,F,D⟩.
Output: The label distribution matrix D.

1 PC = ∅ ;
2 for j = 1 : q do
3 O+

j = ∅; O−
j = ∅; S+j = ∅; S−j = ∅;

4 for i = 1 : n do
5 if yij = 1 then
6 O+

j ← oi;
7 Compute fuzzy concept (GL (oi) ,L (oi));
8 S+j ← (GL (oi) ,L (oi));
9 else

10 O−
j ← oi;

11 Compute fuzzy concept (GL (oi) ,L (oi));
12 S−j ← (GL (oi) ,L (oi));
13 end
14 end
15 Calculate K+

j and K−
j ;

16 if
∣∣K+

j

∣∣ = 1 then
17 E+

j = X+
k ;

18 Ĩ+j = B̃+
k ;

19 else
20 E+

j =
⋃

k∈K+
j
X+

k ;
21 Ĩ+j = 1

|K+
j |
∑

k∈K+
j
B̃+

k ;
22 end
23 pc+j =

(
E+

j , Ĩ+j

)
; pc−j =

(
E−

j , Ĩ−j

)
;

24 PC ←
(
pc+j , pc

−
j

)
;

25 end
26 for i = 1 : n do
27 for j = 1 : q do
28 if yij = 1 then
29 dij =

∥∥∥xi − Ĩ+j

∥∥∥
2
;

30 else
31 dij = −

∥∥∥xi − Ĩ−j

∥∥∥
2
;

32 end
33 end
34 end
35 Calculate d̂ij ;
36 D =

(
d̂ij

)
n×q

;

37 return D.



TABLE 1. Description of the multi-label datasets.

Dataset n m q Card Domain

Emotion 593 72 6 1.869 Music
Birds 645 260 19 1.014 Audio
Enron 1702 1001 53 3.378 Text
Image 2000 294 5 1.236 Image

Genbase 662 1186 27 1.252 Biology
Flags 194 19 7 3.392 Image

CAL500 502 68 174 26.044 Music
CHD49 555 49 6 2.580 Medicine
Medical 978 1449 45 1.245 Text
Scene 2407 294 6 1.074 Image

where, Ri = {lj |rank (xi, lj) ⩽ rank (xi, lk)}.
Coverage (CV): This metric indicates the number of po-

sitions one must scan down the predicted label ranking to
include all relevant labels. A lower coverage value means
that all true labels appear closer to the top of the ranking,
reflecting better classifier performance.

CV =
1

q

(
1

s

s∑
i=1

max
lk∈Li

rank (xi, lk)− 1

)
.

One-error (OE): This metric measures the fraction of in-
stances where the top-ranked predicted label is not among
the true relevant labels. A lower one-error value indicates
that the classifier is more accurate in identifying the most
relevant label.

OE =
1

s

s∑
i=1

I
(
argmax

l∈L
f (xi) /∈ Li

)
.

Ranking Loss (RL): A lower ranking loss indicates bet-
ter performance of the multi-label classification model,
as it reflects fewer instances where irrelevant labels are
ranked above relevant ones.

RL =
1

s

s∑
i=1

∣∣{(lk, lj) |fj (xi) ⩾ fk (xi) , (lk, lj) ∈ Li × Li

}∣∣
|Li|

∣∣Li

∣∣ ,

where Li is the complement of set Li with respect to the
label set L.

4.3. Experimental results

In this section, we evaluate the proposed method using
five-fold cross-validation. Each dataset is randomly parti-
tioned into five equal subsets. During each iteration, one

subset is used for testing while the remaining four are used
for training. This process is repeated five times, ensuring
each subset serves as the test set once. The final perfor-
mance is reported as the average over the five runs. We
assess the results using four commonly used evaluation
metrics: Average Precision (↑), Coverage (↓), One-error
(↓), and Ranking Loss (↓). Here, (↑) indicates that higher
values are better, while (↓) indicates that lower values are
preferable. All results are presented in the format “mean
± standard deviation”, and the best result in each row
is highlighted in bold. The complete evaluation outcomes
are summarized in Table 2.

As shown in Table 2, the proposed LECCL algorithm
achieves leading performance on the majority of datasets
across all four evaluation metrics: Average Precision, Cov-
erage, One-error, and Ranking Loss. These results high-
light the effectiveness of the proposed label enhancement
strategy. By leveraging concept-cognitive learning to re-
construct and enrich label representations, LECCL is able
to capture latent label distributions and structural re-
lationships more accurately. This enhanced label infor-
mation significantly contributes to improved classification
performance, demonstrating the advantage of incorporat-
ing label enhancement in multi-label learning.

5. Conclusions

This paper proposes a label enhancement method for
multi-label learning based on concept-cognitive learning.
By simulating the human cognitive process, the method
explores the latent structural information and intrinsic
correlations among labels within multi-label data to en-
hance the expressive power of the original labels. This en-
hanced representation enables the learning model to better
capture and interpret complex semantic relationships. Ex-
perimental results on ten real-world multi-label datasets
demonstrate that the proposed method achieves superior
performance across multiple evaluation metrics, validating
its effectiveness and advantages in addressing multi-label
learning tasks.
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TABLE 2. Comparison of methods based on multiple metrics.

Dataset Methods Average Precision(↑) Coverage(↓) One-error(↓) Ranking Loss(↓)

Emotion

LECCL 0.8035±0.0167 0.3002±0.0164 0.2565±0.0246 0.1596±0.0160

ML-KNN 0.7889±0.0187 0.3067±0.0205 0.2919±0.0329 0.1718±0.0174

MDFS 0.7998±0.0259 0.3255±0.0169 0.2635±0.0463 0.1758±0.0219

MRDM 0.8011±0.0046 0.2987±0.0177 0.2648±0.0038 0.1643±0.0065

Birds

LECCL 0.7607±0.0214 0.1464±0.0165 0.2884±0.0192 0.0962±0.0120

ML-KNN 0.7168±0.0261 0.1528±0.0199 0.3550±0.0445 0.1059±0.0137

MDFS 0.7074±0.0181 0.1498±0.0105 0.3687±0.0301 0.1085±0.0102

MRDM 0.7210±0.0187 0.1571±0.0189 0.3457±0.0305 0.1121±0.0128

Enron

LECCL 0.7047±0.0084 0.2598±0.0155 0.2197±0.0125 0.0914±0.0054

ML-KNN 0.6239±0.0082 0.2578±0.0147 0.3137±0.0161 0.0938±0.0059

MDFS 0.6253±0.0202 0.2566±0.0060 0.3187±0.0328 0.0926±0.0036

MRDM 0.6341±0.0078 0.2427±0.0053 0.3184±0.0335 0.0892±0.0035

Image

LECCL 0.7782±0.0102 0.1992±0.0097 0.3430±0.0135 0.1812±0.0119

ML-KNN 0.7867±0.0112 0.1971±0.0129 0.3270±0.0180 0.1795±0.0113

MDFS 0.7816±0.0179 0.2063±0.0122 0.3242±0.0290 0.1915±0.0155

MRDM 0.7512±0.0080 0.2182±0.0084 0.3900±0.0157 0.2067±0.0099

Genbase

LECCL 0.9952±0.0038 0.0146±0.0056 0.0015±0.0030 0.0027±0.0030

ML-KNN 0.3189±0.0330 0.2115±0.0195 0.8906±0.0749 0.1958±0.0185

MDFS 0.9844±0.0046 0.0104±0.0016 0.0284±0.0087 0.0014±0.0011

MRDM 0.9868±0.0043 0.0201±0.0063 0.0136±0.0056 0.0060±0.0035

Flags

LECCL 0.8104±0.0129 0.5520±0.0360 0.2032±0.0206 0.2170±0.0165

ML-KNN 0.8033±0.0251 0.5491±0.0228 0.2293±0.0869 0.2256±0.0320

MDFS 0.8020±0.0127 0.5718±0.0141 0.2207±0.0457 0.2350±0.0107

MRDM 0.8058±0.0200 0.5472±0.0151 0.2293±0.0388 0.2252±0.0142

CAL500

LECCL 0.4994±0.0090 0.7446±0.0150 0.1134±0.0305 0.1804±0.0050

ML-KNN 0.4937±0.0088 0.7513±0.0204 0.1183±0.0297 0.1845±0.0068

MDFS 0.4959±0.0021 0.7499±0.0021 0.1002±0.0012 0.1857±0.0008

MRDM 0.4899±0.0125 0.7504±0.0184 0.1176±0.0325 0.1846±0.0025

CHD49

LECCL 0.7936±0.0179 0.4453±0.0105 0.2559±0.0429 0.2018±0.0143

ML-KNN 0.7715±0.0159 0.4817±0.0201 0.2342±0.0332 0.2310±0.0153

MDFS 0.7655±0.0074 0.4844±0.0076 0.2424±0.0136 0.2534±0.0088

MRDM 0.7938±0.0127 0.4522±0.0165 0.2354±0.0205 0.2089±0.0136

Medical

LECCL 0.9071±0.0217 0.0255±0.0062 0.1268±0.0284 0.0157±0.0053

ML-KNN 0.8024±0.0100 0.0610±0.0067 0.2587±0.0121 0.0431±0.0070

MDFS 0.7881±0.0185 0.0632±0.0073 0.2756±0.0214 0.0453±0.0064

MRDM 0.8618±0.0104 0.0498±0.0076 0.1779±0.0151 0.0335±0.0070

Scene

LECCL 0.8461±0.0102 0.0890±0.0087 0.2568±0.0137 0.0898±0.0090

ML-KNN 0.8579±0.0130 0.0885±0.0032 0.2506±0.0227 0.0900±0.0075

MDFS 0.8486±0.0212 0.0883±0.0136 0.2528±0.0319 0.0893±0.0163

MRDM 0.7544±0.0276 0.1451±0.0180 0.3976±0.0388 0.1567±0.0224
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