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Abstract:
There are abundant multi-label data in Real-world scenarios,

and practical applications frequently face challenges from out-
of-distribution (OOD) data that deviate from the training dis-
tribution. To address this, we propose a multi-label OOD de-
tection algorithm (Energy-Gap-YoLOOD) based on YOLOOD
and energy functions. First, during model training, we propose
an energy-based confidence gap expansion function specifically
designed to amplify the separation between in-distribution (ID)
and OOD characteristics in the feature space. Then for in-
ference phase, we introduce a confidence enhancement mech-
anism that: selectively amplifies high-confidence predictions
and adaptively suppresses low-confidence outputs. Finally, we
experimentally validate the effectiveness and robustness of our
method.
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1. Introduction

There are many images or videos taken in real scenes in
the form of multiple labels[1]. And it is not possible for
the datasets to contain all kinds of targets. Thus classifi-
cation of multi-labeled images faces the challenge of OOD
samples outside the distribution of the training datasets.
This challenge is often faced, for example, in the field of
autonomous driving[2] or in medical diagnosis[3]. There-
fore, it is crucial to address the problem of OOD detection
in the field of multi-label classification.

However, most previous research has focused on OOD
detection in multi-class classification[4][5], where samples
and labels follow a one-to-one correspondence. These

methods cannot be directly applied to OOD detection in
multi-label classification. As the OOD detection problem
in multi-label classification has garnered increasing atten-
tion, more and more studies have emerged in this area[6].

For instance, the YOLOOD algorithm[7] leverages
the inherent capability of the YOLO object detection
model[8]—which naturally learns multi-label classification
and focuses on target objects while ignoring background—
for multi-label OOD detection. The YOLOOD algorithm
treats foreground objects as ID information and back-
ground objects as OOD information, achieving promising
results in multi-label OOD detection. However, YOLOOD
employs a binary 0-1 distinction to separate background
and foreground information. In reality, OOD-class im-
ages also contain both foreground and background ele-
ments. Relying solely on ”0” to learn background infor-
mation from ID data for OOD detection is insufficient.
During training, since no OOD data is available, we pro-
pose leveraging background information as supplementary
learning to establish a clear separation between ID and
OOD targets, thereby enhancing multi-label OOD detec-
tion. Building upon the YOLOOD algorithm, this paper
further introduces the Energy-Gap YOLOOD algorithm.

The main contributions and innovations of this paper
are summarised as follows:

• This study proposes an enhanced algorithm for multi-
label OOD detection, with its effectiveness being rig-
orously verified through comprehensive experiments.

• A novel energy-based margin expansion loss function
is developed to better separate ID and OOD samples.

• A novel confidence augmentation mechanism is devel-
oped to asymmetrically enhance larger confidence val-



ues without substantially altering smaller ones, serv-
ing to better reveal the model’s intrinsic classification
ability.

The rest of this article is organised as follows. Section
2 presents the details of the Related Work and Prelimi-
nasies. Section 3 describes the Proposed Method. Section
4 compares the results of our method with other models.
Section 5 concludes the paper.

2. Related Work and Preliminasies

2.1 Multi-label OOD Detection

In recent years, numerous multi-label OOD detection
algorithms have emerged. Wang et al.[9] proposed the
JointEnergy function, which estimates OOD uncertainty
by aggregating label energy scores from multiple labels.
As a post-processing approach for classification results,
this method does not affect the network’s learning pro-
cess. But the JointEnergy is a representative multi-label
OOD inference criterion. Sun et al.[10] proposed a multi-
label learning model that reshapes the uncertain energy
space by incorporating auxiliary outlier exposure based
on the JointEnergy function. Wang et al.[11] developed a
Sparse Label Co-occurrence Scoring (SLCS) method that
leverages label sparsity and co-occurrence information to
compute OOD detection scores. Aguilar et al.[12] designed
an evidential neural network based on evidential learn-
ing principles to quantify uncertainty for OOD detection.
The YOLOOD algorithm utilizes YOLO’s inherent multi-
label classification capability and object-focused atten-
tion mechanism for multi-label OOD detection. Further-
more, specialized multi-label graph neural networks[13]
have been developed for processing multi-label graph-
structured data.

2.2 Preliminasies Definition

OOD Detection. We regard OOD detection as a bino-
mial classification problem, where Din indicates that sam-
ples are the ID data, and Dout indicates the OOD data.
The OOD detection of multi label classification is to judge
whether a multi-label sample x belongs to a known distri-
bution domain through detector G(x). The detector G(x)
is determined by the following formula:

G(x) =

{
1 if x ∼ Din

0 if x ∼ Dout
(1)

Energy Function. Our energy function adopts the Join-
tEnergy function proposed in[9]. This function is formally
expressed as:

E(f) =

C∑
i=1

log(1 + efi), (2)

where fi represents the network’s logits output for the i-th
class. This function enlarges the confidence gap between
ID and OOD data by summing the confidence of all labels.

3. Proposed Method

The key to multi-label classification lies in capturing
the similarities between objects. To facilitate OOD de-
tection, we also need to learn the differences between ID
objects and other objects. Thus we extend the YolOOD
framework and propose an Energy-Gap-YoLOOD (EG-
YolOOD) algorithm.

In this section, we will introduce the EG-YolOOD al-
gorithm for multi-label OOD detection.The EG-YolOOD
algorithm inherits YolOOD’s modified YOLOv5 architec-
ture for multi-label OOD detection. The training proce-
dure (top section of Figure 1) processes ID images through
the network to extract multi-scale features, generating
three levels of logits outputs. During testing, the network
processes both ID and OOD data samples. The three-
tiered logits from the output head are then transformed
into final OOD scores through the computational frame-
work depicted in the bottom section of Figure 1.

3.1 EG-YolOOD Classifier

The EG-YolOOD algorithm mainly consists of the fol-
lowing three components.

3.1.1 Multi-label Confidence Scores Learning

The network outputs three parallel logits layers with
identical channel dimensions. Each layer contains n + 1
channels, where n corresponds to the number of object
categories and the additional channel represents the confi-
dence score - indicating the probability of a spatial location
being an object center point. To optimize this confidence
prediction, we employ the Binary Cross-Entropy (BCE)
loss function, formally defined as:

Lconf =
∑
c∈C

LBCE (cconf , ĉconf) . (3)
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FIGURE 1. Diagram of the EG-YolOOD classifier structure.The upper part is the training process.
The lower portion is the testing phase.

Here, LBCE represents the binary cross-entropy loss func-
tion, cconf is the network’s predicted confidence score, and
ĉconf is the ground-truth label composed of binary values
(0 or 1). The value is set to 1 within the minimal enclosing
square (infimum bounding box) centered on the target’s
center point, and 0 at all other positions.As shown in the
following equation:

φu = i ≥ xk,center − pk · Wr

2
, φl = j ≥ yk,center − pk · Hr

2
.

φd = i ≤ xk,center + pk · Wr

2
, φr = j ≤ yk,center + pk · Hr

2
.

(4)

ĉconf(i, j) =

{
1, φu ∧ φd ∧ φl ∧ φr,

0, else.
(5)

where pk represents the ratio between the size of the
lower bounding box and the size of the original label box.
The values are set to 0.0, 0.1, and 0.5 on the three scale
logits, respectively.

3.1.2 Multi-label Classification Scores Learning

During the training process, the network’s output logits
are activated using the sigmoid function. For multi-label
classification score learning, we employ the conventional
BCE loss function, which is formulated as follows:

Lcls =
∑
c∈C

∑
n∈{1,...,Nc}

ĉobj · LBCE(ccls n, ĉcls n) (6)

Among them, ccls n represents the predicted class score
for each category. ĉcls n is the conceptual value indicating
whether each position in the lower bounding box belongs
to each category. If a position is responsible for predicting
class i, the value at that position is 1; otherwise, it is 0.
Additionally, each position can predict multiple categories.
The specific values are as shown in the equation:

ĉcls n(i, j) =

{
1, class n is in cell (i, j)
0, else

(7)



3.1.3 Energy-based Confidence Extend Gap Learning

To widen the gap between the foreground values (ID)
and background values (OOD) in the predicted confidence
scores, a function is designed using the energy function to
amplify the confidence disparity. This function first com-
putes two differences. The first is the gap between the
energy value of the predicted confidence scores and the en-
ergy value of 1 minus the predicted confidence scores. The
second is the difference between the corresponding labels.
Then, the function also calculates the euclidean distance
between these two differences. As shown in the equation
below, the learning of this function aims to separate ID
and OOD data, thereby enhancing OOD detection.

Lgap =
∑
c∈C

1

w ∗ h
∑
i∈w

∑
j∈h

|E(cconf(ij))− E(1− cconf(ij))|

− |E(ĉconf(ij))− E(1− ĉconf(ij))|
(8)

Where w and h are the width and height of the output
feature map, respectively.

Therefore, the total loss function is a weighted linear
combination of the three aforementioned loss functions,
expressed as follows:

L =λ1Lconf + λ2Lcls + λ3Lgap (9)

where λ1,λ2,λ3 are the weighting factors.

3.2 Multi-label OOD Scores

In the test phase, we perform two operations for the
prediction confidence scores and prediction classification
scores of the network output. We first enhance the con-
fidence prediction value. Secondly, we aggregate the en-
hanced confidence scores and classification scores.

3.2.1 Confidence Enhancement Strategy

For the confidence scores predicted by the network, we
first apply the sigmoid function for activation and then
combine them with classification scores for OOD detec-
tion. Since the sigmoid function constrains the confidence
scores to the range [0, 1], it reduces the gap between the
distributions of predicted values. To ensure that low val-
ues remain almost unchanged while amplifying high val-
ues, we design an enhancement function as follows:

F (x) = ex − 1 (10)

This function satisfies the following properties: As x →
0, f(x) ≈ x(small values remain fewer changes). For x >
0, f(x) > x(larger values are amplified).

3.2.2 Aggregate OOD Scores

Finally, the enhanced confidence scores and classifica-
tion scores from the three detection heads of different
scales are aggregated to obtain the final OOD scores. The
specific aggregation process is as follows:

S(x) = max
n∈{1,...,Nc}

∑
Ck∈fS(x)

max
c∈Ck

{σ(F (cconf)) · σ(ccls n)}

(11)

G(x, t) =

{
1 S(x) ≥ t

0 S(x) < t
(12)

Here, t is the threshold determined such that the func-
tion G(x, t) correctly classifies a specified proportion (e.g.,
95%) of ID data. Mathematically, t satisfies:

Px∼DID (G(x, t) classifies x correctly) ≥ 95% (13)

4. Experiment and Analysis

This section describes the experiment.

4.1 Datasets

ID Datasets. We used three datasets as ID datasets. (1)
PASCAL-VOC[14]: containing 20 categories, divided into
5717 training images, 5823 validation images and 10991
test images. (2) MS-COCO[15]: containing 80 categories,
divided into 117266 training images, 4952 validation im-
ages and 40670 test images. (3) Object365in[16]: This
dataset is a subset of the Object365 dataset[16] containing
20 common categories, divided into 68723 training images,
5000 validation images and 10000 test images. Among
them, the training and validation sets were used to train
the network. The test sets were used for testing as ID
datasets.
OOD Datasets. We employed two datasets as OOD
datasets: (1) Object365out: A subset of the Ob-
ject365 dataset comprising 200 categories distinct from
those in Object365in, containing 11162 images.(2) NUS-
WIDEout[17]: A subset of the NUS-WIDE dataset formed
by removing overlapping categories, resulting in 54 re-
maining classes and 9415 images. These datasets were
only used in the testing phase for OOD detection.



TABLE 1. Comparison of the multi-label OOD detection performance of EG-YolOOD vs. state-of-the-art methods on Object365out
OOD datasets. ↓ indicates that smaller values are better, ↑ indicates that larger values are better. Bold indicates optimal results.
These indicators have the same meaning as in Table 2.

Dout Object365out NUS-WIDEout
Din MS-COCO PASCAL-VOC Object365in MS-COCO PASCAL-VOC Object365in

Algorithms FPR95 ↓ /AUROC ↑ /AUPR ↑
MaxLogit 18.09/96.55/99.06 20.80/96.25/96.54 28.86/94.56/94.68 12.46/97.41/99.39 18.75/96.86/97.60 41.60/91.97/92.98

MSP 47.13/85.00/94.84 40.32/90.66/90.76 66.10/83.57/84.14 39.45/87.55/96.37 38.05/91.47/92.87 81.98/76.36/80.12
JointEnergy 16.35/96.95/99.22 19.99/96.63/97.08 20.07/96.26/96.61 8.59/97.84/99.53 16.06/97.12/97.94 25.29/95.20/96.08
YOLOOD 10.35/97.47/99.28 16.44/96.46/96.33 16.68/96.06/95.49 5.20/98.43/99.66 18.16/96.94/97.69 10.49/97.78/97.99

EG-YolOOD 9.73/97.50/99.30 15.89/97.15/97.38 16.16/96.07/95.51 4.68/98.49/99.67 21.63/96.62/97.52 12.77/97.54/97.85

4.2 Experimental Details

During the training phase, we trained the model for
30 epochs using the training and validation sets from the
ID Datasets. We employed the Adam optimizer with an
initial learning rate of 10-5. If the validation mAP did
not improve for 2 consecutive epochs, the learning rate
was reduced by a factor of 0.1. Our experiments were
conducted on RTX 4090 GPUs using PyTorch 1.11.0.

4.3 Evaluation Indicators

We evaluated OOD detection performance using three
metrics: (1)FPR95: the false positive rate at 95% true
positive recall; (2) AUROC: the area under the receiver
operating characteristic curve; (3) AUPR: the area under
the precision-recall curve.

4.4 Analysis Results

The experimental results of our algorithm on the three
ID datasets are presented in Table 1. We conducted
comprehensive comparisons with existing state-of-the-art
OOD detection methods for multi-label scenarios under
identical experimental settings and datasets. We imple-
mented the following representative OOD detection algo-
rithms baseline network YOLOOD and using YOLO-cls
as the base classifier: MaxLogit[18], Maximum Softmax
Probability(MSP)[19], JointEnergy.

From the detection results on the OOD detection
dataset Object365out, it can be seen that the EG-YolOOD
algorithm performs optimally in the training results on the
MS COCO dataset and the PASCAL-VOC dataset com-
pared to other algorithms. It improves by 0.62/0.03/0.02
and 0.55/0.69/1.05 on the three metrics, respectively,
compared to the suboptimal algorithm. Secondly, our al-
gorithm achieves the best FPR95 value in the detection

results on the Object365out dataset when trained on the
Object365in dataset. Although the AUPR and AUPR val-
ues are slightly inferior, they still show improvement over
the baseline network.

From the detection results on the OOD detection
dataset NUS-WIDEout, it can be seen that our method
performs best on the model trained with the MS-COCO
dataset, improving by 0.52/0.06/0.01 on the three met-
rics compared to the suboptimal algorithm. Although the
performance is slightly inferior on models trained with the
other two datasets, it is still not the worst. Therefore, the
above results demonstrate the effectiveness and robustness
of our algorithm.

(a) YolOOD (FPR95=15.89%) (b) YOLO (FPR95=16.44%)

FIGURE 2. Score distribution when using PASCAL-VOC as
the ID dataset and Objects365out as the OOD dataset.

In addition, we also show the distribution of scores for
EG-YolOOD and YOLOOD when using PASCAL-VOC as
the ID dataset and Object365out as the OOD dataset, as
shown in Fig. 2. It can be intuitively found that the EG-
YolOOD algorithm (a) widens the gap between ID and
OOD compared to the YOLOOD algorithm (b) to achieve
our original intention, which again proves the robustness
of our improved algorithm.



5. Conclusion

To further widen the gap between ID and OOD infor-
mation in multi-label OOD detection algorithms, we have
proposed a confidence gap expansion function based on the
energy function. Additionally, during the testing phase,
we have introduced an enhancement function to amplify
the effect of high-confidence predictions while suppressing
the influence of low-confidence values. Finally, we have
validated the effectiveness and robustness of our approach.

Moving forward, we will further explore how multi-label
OOD detection algorithms can better capture data simi-
larity and uncertainty.
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