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Abstract:

The explosive growth of high-dimensional data presents
significant challenges in addressing the curse of dimensionality,
where feature redundancy and non-monotonic evaluation in
feature selection remain critical issues. This paper proposes
a novel feature selection method that integrates feature
correlation and neighborhood decision mutual information.
We design a dual-criterion evaluation mechanism: leveraging
mutual information to measure feature relevance and con-
structing a non-monotonic framework based on neighborhood
Guided by this theory, the UDI-MI

algorithm is developed to dynamically identify discrimina-

decision information.

tive features and filter redundant ones through adaptive
thresholds.
with exponential decay of mutual information, the algorithm

By integrating decision information measures

balances classification performance and feature independence.
Experimental results demonstrate that the method effectively

reduces computational complexity, maintains high classifi-

cation accuracy, preserves the non-monotonicity of feature

subsets, and performs excellently in comprehensive evaluations.
Keywords:

Feature selection; Neighborhood rough set; Feature Corre-
lation; Entropy measures

1. Introduction

The information age has witnessed an explosive growth
of high-dimensional data, which provides unprecedented
support for scientific and technological advancement while
simultaneously introducing the critical challenge of dimen-
sionality curse. This issue has profoundly impacted var-
ious cutting-edge research fields including machine learn-
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ing, data mining, and database systems. With the ad-
vancement of sensing technologies and data acquisition
methods, contemporary datasets are characterized by ex-
ponentially increasing feature dimensions, complex nonlin-
ear correlations among features, as well as prevalent fea-
ture redundancy and noise interference. In this context,
feature selection techniques, as a crucial preprocessing
step, have demonstrated their effectiveness in identifying
and eliminating irrelevant and redundant features through
systematic evaluation frameworks, achieving optimal di-
mensionality reduction while preserving the discriminative
power of original data. Recent years have seen significant
theoretical and methodological breakthroughs in this field,
with scholars worldwide making substantial progress in
addressing diverse feature selection challenges[3, 10, 13].

Rough set theory has proven to be an effective math-
ematical framework for handling uncertainty and consis-
tency analysis[9]. Nevertheless, the inherent limitation of
classical rough sets in processing only discrete data has
motivated extensive research on its extensions. Schol-
ars have developed various enhanced rough set models,
including neighborhood rough sets (NRS), fuzzy rough
sets, probabilistic rough sets, and variable precision rough
sets[5, 6, 11, 12]. Particularly, the neighborhood rough set
model overcomes the discrete data constraint by incorpo-
rating neighborhood operators, thereby substantially ex-
panding the applicability of rough set theory to complex
real-world problems involving continuous data.

Neighborhood rough set, with its adaptive characteristic
of neighborhood radius, demonstrates strong adaptability
and broad application potential in numerous fields such
as data mining, pattern recognition, and artificial intelli-
gence, emerging as an important tool for handling complex
data and uncertainty problems[1, 2, 8]. Li et al.[7] estab-



lished a novel attribute significance measurement system
based on single-attribute subsets and proposed an unsu-
pervised attribute reduction framework using neighbor-
hood dependency, creating a new quantitative benchmark
for feature selection in unsupervised learning scenarios.
Hu et al.[4] introduced an object overlap degree metric
through the k-nearest-neighbor rough set model, which
precisely characterizes the spatial coverage and distance
relationships between different classes of data. This ap-
proach maintains decision approximation capability while
significantly improving high-dimensional data processing
efficiency . A low-complexity heuristic feature selection
algorithm incorporating Fisher Score method was ulti-
mately proposed by Sun et al.[14], who systematically in-
vestigated neighborhood entropy uncertainty measures by
defining neighborhood credibility and coverage indices and
integrating decision neighborhood entropy with mutual
information theory. Starting from theoretical interpreta-
tion of multi-neighborhood entropy, Zhang et al.[15] con-
structed a three-dimensional evaluation model combining
feature relevance, redundancy, and interaction, thereby
developing a dynamic feature selection algorithm adapted
to streaming data characteristics. This effectively ad-
dresses the core limitations of traditional methods that
ignore feature interactions and are incompatible with the
temporal nature of streaming data.

The rest of this paper is structured as follows. Section 2
reviews the fundamental theories of neighborhood rough
sets, information entropy, and feature evaluation metrics.
Section 3 proposes a novel feature selection method in-
tegrating feature correlation and neighborhood decision
mutual information, including adaptive threshold design
and comprehensive evaluation criteria. Section 4 details
the UDI-MI algorithm and presents experimental results
on UCI datasets, verifying its efficiency and classification
performance. Finally, we have summarized this article in
Section 5.

2. Preliminaries

In this section, we systematically review the funda-
mental theories and core concepts of neighborhood rough
sets, information entropy, and information gain.

Definition 2.1 In a neighborhood decision system N'DS =
(U, AT U D,V, f), for any feature subset B C AT, define
the joint neighborhood granule of an object z € U with

respect to B and D as:
Ng,D(x) =
where NG%(x) denotes the neighborhood granule of

under B, and [z]p represents the decision equivalence
class of x.

Definition 2.2 For an object x € U and feature subset
B C AT, the neighborhood entropy is formulated by the

expression.
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This measure innovatively employs the joint neighbor-
hood granule to quantify data uncertainty.

NE}(B)

Definition 2.3 The average neighborhood entropy of the
universe U with respect to B is given by:
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Moreover, NE?®(B) satisfies the inequality
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Definition 2.4 In a neighborhood decision system N'DS =
(U, AT U D,V, f), for any feature subset B C AT, the
neighborhood joint entropy of D and B, neighborhood
conditional entropy of D given B, and decision informa-
tion between D and B are defined by the following formu-
las, which satisfy corresponding properties:
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As a fundamental criterion in feature selection, infor-
mation gain measures feature relevance by evaluating the
reduction in sample set uncertainty. Focusing on con-
tinuous features within high-dimensional datasets, Qu et




al.[10] develop an optimized information gain calculation
approach incorporating adaptive threshold determination.

For any feature subset B C AT, the information entropy
is formally defined as E(B) = —Y.._, p(X;)log, p(X;)
a fundamental measure that serves as the theoretical
foundation for the subsequent definition.

Definition 2.5 Given a neighborhood decision system
NDS = (U,AT U D,V, f), for any continuous feature
a € AT, the information gain IG(a) is defined as:
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IG(a) = max Hp(U) -
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where T, = {H% | v; € Sort(V,)} denotes the
candidate threshold set obtained by computing midpoints
between consecutive values of the sorted feature values,
Hp(-) represents the conditional entropy with respect to
decision attribute D, and UdL and U{f indicate respec-
tively the left and right subsets partitioned by threshold
d, containing samples with feature values less than or
equal to and greater than d.

The feature selection process begins with systematically
evaluating all features using the Information Gain (IG)
metric. After ranking the features in descending order
of their IG values, the top-K most discriminative fea-
tures are selected to form the candidate subset (). For
high-dimensional data, this method significantly improves
computational efficiency while maintaining selection ac-
curacy by incorporating specific dimensionality reduction
algorithms. The entire process achieves O(n) time com-
plexity, demonstrating excellent performance in handling
high-dimensional data.

3. Feature Selection Based on Feature Correlation
and Neighborhood Decision Mutual Information

This section proposes a feature selection method
fusing feature correlation and neighborhood decision
mutual information, aiming to address a series of issues
caused by redundant features in high-dimensional data,
such as weakened classification performance, insufficient
algorithm stability, and surging feature space complexity.
First, addressing the limitations of traditional methods in
handling feature redundancy, we design a dual-criterion

evaluation mechanism: measuring the correlation be-
tween features and decision attributes through mutual
information, and constructing a non-monotonic evalu-
ation framework by integrating neighborhood decision
information. Second, based on this evaluation mecha-
nism, we develop the Unsupervised Decision Information
with Mutual Information (UDI-MI) algorithm with
correlation-based screening, which dynamically identifies
discriminative features and filters out redundant features
through adaptive thresholds. Finally, this method
preserves the non-monotonicity of feature subsets while
achieving collaborative optimization of correlation analy-
sis and classification performance in the feature selection
process.

Definition 3.1 In a neighborhood decision system N'DS =
(U, AT U D,V, f), for any candidate feature a; € AT and
selected subset B C AT, their mutual information is de-
fined as:

p(ai,b)

MI(a;, B) = plai, b) log p(ai)p(b)

>
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where V,, and Vp denote the value spaces of a; and B
respectively, p(a;,b) is the joint probability distribution,
with p(a;) and p(b) being marginal distributions. This
measure quantifies nonlinear feature redundancy via
statistical dependency, where higher MI(a;, B) values
indicate stronger redundancy between a; and B.

The measure captures nonlinear feature redundancy
through statistical dependency, surpassing conventional
linear correlation techniques that fail to detect nonlinear
associations, which allows for reliable detection of redun-
dant features in diverse data environments.

Definition 3.2 Given the mutual information matrix MIpg
of feature subset B, the adaptive threshold 7 is:

T = pmig + k- oMy

where pumr, and omi, are the mean and standard devi-
ation of matrix elements, and k is a tuning factor. The
threshold adapts to the mutual information distribution
by increasing with growing correlation variability as onr,
rises to prevent over-pruning, while decreasing to improve
redundancy removal when variability reduces.

Through dynamically adjusting to data-specific correla-
tion distributions, this approach resolves the over-pruning



and redundant retention problems of fixed thresholds
while providing reliable redundancy control in high-
dimensional feature spaces with diverse dependency
patterns.

Definition 3.3 For candidate feature a; € AT\ B, we define
the comprehensive score Score(a;) as follows.

Score(a;) = DI°(D, B U {a;}) - exp (—\ - MI(a;, B))

where DI°(D, B U {a;}) denotes the decision information
measure from UDI, and the balance parameter A\ has a de-
fault value of 0.8. The exponential decay term suppresses
contributions from highly redundant features, ensuring
selected features exhibit both high discriminability and
low correlation.

Integrating both discriminative power (DI°) and
redundancy (MI), this unified metric achieves adaptive
balance between classification performance and feature
independence, where the exponential term effectively
suppresses highly redundant features to maintain high
discriminability and low correlation in the selected
features.

Definition 3.4 In a neighborhood decision system N'DS =
(U, AT U D,V, f), for any candidate feature B C AT,
We determine the importance of feature a; € (AT — B)
through the following expression.

Sg, . (ai, B, D) =DI°(D, BU {a;}) — DI°(D, B)

When B = (), the feature importance measure sim-
plifies to Sg,,.(ai,0, D) = DI°(D,{a;}). This metric
evaluates the discriminative power of individual features
when no prior features are selected. More generally,
Sg,u:(ai, B, D) measures the marginal contribution of
feature a; to the discriminative information of subset
B. The sign and magnitude of this measure capture the
complex, non-monotonic relationships between features
in high-dimensional spaces. These characteristics enable
the Unsupervised Decision Information (UDI) algorithm
to implement an adaptive feature selection strategy that
goes beyond conventional monotonic approaches.

This definition quantifies the incremental impact of
a feature on decision information, capitalizing on the
non-monotonicity of DI° to model intricate feature
interactions. It provides a crucial link between fea-
ture discriminability and the non-monotonic evaluation

framework, enabling the mutual-information-enhanced
feature selection approach to balance feature relevance
and redundancy during the selection process.

4. Algorithm and experimental analysis

This section presents the UDI-MI feature selection
algorithm, which integrates neighborhood decision in-
formation and mutual information to balance feature
relevance and redundancy. The algorithm first performs
high-dimensional preprocessing using Information Gain
when the feature dimension exceeds 500, then iteratively
selects features by maximizing decision information
while pruning redundant features via adaptive mutual
information thresholds. Experimental evaluations are
conducted to validate the algorithm’s effectiveness in
feature selection and computational efficiency.

The experimental setup employs a neighborhood radius
0 = 0.2 to quantify feature similarity, with the mutual
information threshold parameter k optimized within [0, 2]
to regulate redundancy pruning through the adaptive
threshold 7 = umi, + k - omi,. For high-dimensional
datasets, we preset K = 200 features during preprocessing
to maintain computational efficiency. To comprehen-
sively evaluate the proposed method, we analyze both
the efficiency of feature selection and the preservation
of classification performance. Comparative experiments
with UDI-IG confirm the superior performance of UDI-MI
in computational efficiency and feature selection quality.
Experimental results consistently demonstrate that
UDI-MI outperforms UDI-IG across all three evaluation
dimensions, maintaining robust performance across
diverse data characteristics.

The performance of the designed algorithm is tested
and evaluated, followed by a detailed analysis of
the experimental results. The experiments are con-
ducted using Python on a Windows 10 PC equipped
with 16 GB RAM and a 3.10 GHz i5-11300H CPU.
Five datasets are selected from the UCI repository
(http://archive.ics.uci.edu/ml/datasets.html) for the ex-
periments, and their detailed information is presented in
Table 1.

In terms of runtime efficiency, UDI-MI demonstrates
significant superiority over UDI-IG on large-scale datasets.
For instance, on the Madelon dataset, UDI-MI reduces the



Algorithm 1: UDI-MI Feature Selection Algorithm

Input

: Neighborhood decision system
NDS = (U, AT U D,V, f), neighborhood
radius §, mutual information threshold
parameter k, preprocessing feature number
K

Output: Selected feature subset R

1 begin
2 Notation: C denotes candidate feature set, S
denotes survived feature set after redundancy
pruning, f* denotes the optimal feature;
3 R+ 0
4 if |AT'| > 500 then
5 Q@ + Top K features selected by
Information Gain;
6 AT + Q;
7 end
8 C + AT;
9 | while C #0 do
10 for Each f € C do
11 ‘ Compute DI’(D, RU {f});
12 end
13 if R # () then
14 T pumMig + k- omig;
15 S« {feC|MI(f,R) <7}
16 end
17 else
18 | S+
19 end
20 if S =0 then
21 | C«0;
22 end
23 else
24 f*+
{fesIPr(D,RU{f}) =DL,,, };
25 R+ RU{f*};
26 C+C\{f*}
27 end
28 end
29 return R;
30 end

TABLE 1. Description of the experimental datasets

No.s  Datasets Objects  Attributes  Classes
1 dermatology 358 54 6

2 Madelon 2200 500 10

3 waveform 5000 21 3

4 au2-10000 10000 250 2

computation time from 69291.98s for UDI-IG to 36184.70s,
achieving a 47.8% runtime reduction. This optimization
is attributed to the adaptive redundancy pruning mecha-
nism, which filters features exceeding the dynamic thresh-
old 7 = pimry, +1.50Mmi1,. As aresult, UDI-MI not only ac-
celerates the feature selection process but also ensures the
selection of informative and non-redundant features. As
shown in Table 2, UDI-MI consistently outperforms UDI-
IG in runtime efficiency, particularly in high-dimensional
scenarios, effectively mitigating the curse of dimension-
ality through its preprocessing and dynamic thresholding
strategy.

TABLE 2. Attribute reduction time consumption

No.s Datasets UDI-IG UDI-MI

1 dermatology 948.3376 547.7914

2 Madelon 69291.9843 36184.6977
3 waveform 1435.4663 7098.2438
4 au2-10000 23181.2409 10534.2915

Furthermore, the runtime reduction does not com-
promise classification performance. UDI-MI consistently
outperforms UDI-IG in classification accuracy across all
datasets, with significant improvements observed in both
low-dimensional and high-dimensional scenarios. The
adaptive threshold mechanism ensures that critical dis-
criminative features are retained, leading to enhanced clas-
sification performance. This demonstrates that UDI-MI
effectively balances computational efficiency and classifi-
cation accuracy, making it a reliable approach for feature
selection in high-dimensional data analysis.

TABLE 3. Classification accuracy of KNN classifier

No.s Datasets UDI-IG UDI-MI

1 dermatology 0.7633 &+ 0.0391 0.8437 4+ 0.0244
2 Madelon 0.4065 £ 0.0219 0.4976 £+ 0.0172
3 waveform 0.7152 4 0.0086 0.7884 4 0.0048
4 au2-10000 0.6197 + 0.0094 0.6538 + 0.0051

Regarding the analysis of remaining attribute quantities
after reduction, UDI-MI demonstrates remarkable effec-
tiveness in dimensionality reduction while preserving key



features. Compared with UDI-IG, UDI-MI can achieve
a higher reduction rate. This significant difference high-
lights the algorithm’s capability to identify redundant fea-
tures through mutual information constraints. The adap-
tive thresholding mechanism ensures that only features
with low redundancy and high decision information are
retained, leading to more compact and discriminative fea-
ture subsets. This not only simplifies model complexity
but also enhances interpretability, as the reduced feature
sets highlight the most informative attributes for classifi-
cation tasks.

TABLE 4. The number of attributes

No.s Datasets UDI-IG UDI-MI
1 dermatology 27 18

2 Madelon 245 193

3 waveform 20 16

4 au2-10000 143 117

5. Conclusion

This paper presents UDI-MI, a feature selection method
integrating feature correlation and neighborhood decision
mutual information. It uses mutual information to mea-
sure feature relevance and an adaptive threshold to prune
redundant features. The algorithm balances classifica-
tion performance and feature independence via a compre-
hensive score combining decision information and mutual
information. Experiments on UCI datasets show UDI-
MI reduces runtime, improves classification accuracy, and
achieves higher feature reduction rates than UDI-IG, ef-
fectively addressing the curse of dimensionality in high-
dimensional data.
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