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Abstract:

Cardiovascular diseases are the second leading cause of death
in Japan, underscoring the need for improved prevention and
treatment. Carotid endarterectomy (CEA) is a surgical pro-
cedure to remove plaque that has accumulated in the intima
of the carotid artery, and is expected to reduce the risk of
stroke. However, the long-term prognosis and complications
after CEA surgery are not fully understood. In this study, we
investigate pathological factors associated with the modified
Rankin Scale (mRS) score, based on features extracted from
pathological images of plaques removed by CEA and clinical
data.

We extract features from pathological images using an au-
toencoder (AE) and analyze them with Lasso regression to in-
vestigate their association with the mRS score. The obtained
R? score was 0.8427, suggesting that the features obtained by
AE retained sufficient information related to the mRS score.
It should be noted that this analysis was conducted on the
training set; therefore, its generalization performance needs to
be evaluated in the future. We also visualized the regions as-
sociated with the mRS score in pathological images using the
trained regression model.
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1. Introduction

In Japan, cardiovascular disease is the second leading
cause of mortality, following cancer. Although many stud-
ies have investigated the disease’s pathogenesis and aimed
to develop preventive and therapeutic approaches [1], no
effective treatment has been established yet [2]. CEA is

a surgical procedure that removes plaque from the intima
of the carotid artery. It is performed to reduce the risk
of stroke caused by atherosclerosis-induced narrowing and
reduced blood flow to the brain. The carotid artery serves
as a major conduit for blood flow to both the heart and
brain. When plaque accumulates within the artery, it can
lead to a deterioration in cerebral blood flow. In some
cases, the plaque may rupture, resulting in a stroke. CEA
is a surgical procedure performed to remove such plaque
and has been shown to reduce the incidence of stroke [3].
However, the long-term outcomes of this procedure remain
uncertain. According to Ref. [4], between 6% and 36%
of patients who undergo CEA may experience resteno-
sis, which limits the procedure’s long term efficacy. Al-
though there are existing studies that have used ultra-
sound echocardiographic images of patients [5] and clin-
ical data from patients [6]~[8] to predict prognosis after
CEA surgery, there are no studies that have examined the
relationship between carotid plaque pathology and postop-
erative outcomes. In this paper, we perform data mining
to predict outcomes after CEA using features extracted
from pathological images of plaques removed by CEA. We
also estimate the regions in the pathological images that
contributed to the prediction by visualization with heat
maps.

2. Preliminaries
2.1 Dataset
The study uses pathological images and clinical data

from 141 cases collected at the National Cerebral and
Cardiovascular Center. The cases include patients with



FIGURE 1. An example of a pathological image

TABLE 1. Patient Distribution by mRS Score. The mRS cate-
gorizes functional outcomes as follows: 0 = No symptoms, 1 =
No significant disability, able to carry out all usual activities, 2
= Slight disability, unable to carry out all previous activities but
able to look after own affairs without assistance, 3 = Moderate
disability, requiring some help but able to walk unassisted, 4 =
Moderately severe disability, unable to walk and attend to bod-
ily needs without assistance, 5 = Severe disability, bedridden,
requiring constant nursing care [9]

mRS | 0 1 2 3.4 5
Patients | 72 36 13 11 3 3

carotid artery stenosis, and pathological evaluation was
performed by a certified pathologist. Pathological images
are Whole Slide Imaging (WSI) of hematoxylin and eosin
(H&E) stained specimens taken with a 40x magnification
(Fig. 1).

mRS is used as an index to evaluate the clinical outcome
of patients. It is defined on a 6-point scale ranging from 0
to 5, and is commonly used to assess a patient’s functional
prognosis. Table 1 shows the number of patients for each
mRS grade.

The study was approved by the Ethics Committee of
the National Cerebral and Cardiovascular Center, and in-
formed consent was obtained from the patients.

2.2 Autoencoder [10]

Autoencoder (AE) is a type of neural network for data
compression and feature extraction. The structure con-
sists of two parts, an encoder and a decoder. The encoder
compresses the input data into a low-dimensional latent
space, while the decoder reconstructs the original data
from this representation. The network learns by mini-

mizing the difference between the input and the recon-
structed data, thereby updating the weights of both the
encoder and decoder. This yields a low-dimensional latent
representation of the data. Since the architecture of the
encoder, decoder, and loss function can be freely designed,
the model can be tailored to fit the specific characteristics
of the data. In this study, only the encoder is utilized as
a feature extraction model after training the AE to accu-
rately reconstruct the input data.

2.3 Lasso regression

Lasso regression (Least Absolute Shrinkage and Selec-
tion Operator) is a linear regression technique that incor-
porates an L' regularization term, promoting sparsity in
the regression coeflicients. The L! regularization enhances
model interpretability by performing feature selection and
retaining only the most relevant variables. During the
learning process, a linear combination of the input data is
computed. The regression coefficients are then iteratively
updated to minimize the difference between the predicted
results and the target variable. The regression coefficients
are updated by minimizing an objective function that in-
cludes an L' regularization term. L' regularization penal-
izes the sum of the absolute values of the coefficients, ef-
fectively shrinking those with small contributions to zero.
This allows Lasso regression to reduce unnecessary fea-
tures and sparsify the model.

3. Proposed Method

In this study, we focus on carotid plaques extracted via
CEA and aim to evaluate the association between image-
derived features and clinical outcomes (mRS). The pro-
posed method follows the process shown in Fig. 2. First,
the pathological image is segmented. Next, patches of
256 x 256 pixels are extracted from the segmented im-
age. These patches are processed with a pre-trained AE
to extract feature vectors. The feature vectors for each
patient are then averaged to form a representative vector.
The representative vector is input into a Lasso regression
model to predict the mRS score. Finally, post-processing
such as rounding and clipping is performed to obtain the
mRS score.

3.1 WSI processing

Due to the large size of pathological images, direct anal-
ysis using CNN models is computationally expensive and
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FIGURE 2. Proposed method overview

memory-intensive. Therefore, in this study, we prepro-
cess WSIs using CLAM (Clustering-constrained Attention
Multiple Instance Learning) [11] to segment plaques in
WSIs and extract 256 x 256 pixels patches by the slid-
ing window. In addition, patches containing more than
30% of pixels with RGB values in the range from [220,
220, 220] to [255, 255, 255] are removed to eliminate those
with excessive background.

3.2 Prior training of autoencoder

The encoder part of the AE is used to obtain a feature
representing the pathological feature representation of the
patch image with pathological features of the pathologi-
cal image. Patch images from patients randomly sampled
from the entire dataset are used to train the AE. The en-
coder architecture takes a 256 x 256 x 3 patch image
as input and outputs a 16 x 16 x 256 latent represen-
tation. The encoder architecture consists of four convo-
lutional and pooling layers, while the decoder comprises
four transposed convolutional layers.

3.3 Feature extraction

By using the encoder part of the trained autoencoder,
pathological image features are extracted from patch im-
ages. Since the extracted features are obtained on a per-
patch basis, feature vectors are averaged to generate a rep-
resentative vector for each patient. These representative
vectors are then used for subsequent regression analysis.

3.4 Pathological feature analysis for the mRS pre-
diction

In this study, we aim to investigate the relationship be-
tween pathological features extracted from WSI and the
clinical outcome, measured as the mRS. Given the lim-
ited sample size, we prioritize uncovering potential trends
rather than constructing a robust predictive model. To
achieve this, we employ Lasso regression, which is well-
suited for small datasets and feature selection due to its
L' regularization property.

Lasso regression models the relationship between each
patient’s representative feature vector x; and the corre-
sponding mRS score y; as a linear combination, as de-
scribed in Eq.(1).

Z:Ii = Wy + Z W;Tqj (1)

j=1

The model is trained by minimizing the objective function
in Eq.(2), which includes both the squared error and an
L! regularization term to enforce sparsity.

1 N n

L(w) = N Z(yz — 9% + QZ |w;]

=1

(2)

where N is the number of patients, n is the dimensional-
ity of the representative vector, g; is the predicted mRS
score, y; is the ground truth mRS score, and « is a hyper-
parameter that controls the strength of the regularization.



TABLE 2. Lasso regression training data distribution

mRS o 1 2 3 4 5

tram| 4 0 0 0 1 O

Patients vaid | 1 0 0 O 0 O
Lasso train |13 13 13 11 2 3

During training, regression coefficients w; are adjusted to
minimize the difference between ¢; and y;, with the L!
penalty shrinking coefficients with low contributions to-
ward zero. This results in a sparse model that highlights
features contributing to predicting the mRS score. Since
Lasso regression yields continuous values, the predicted
mRS values are constrained by rounding and clipping to
the range of 0 to 5.

4  Experiment
4.1 Experimental dataset

Due to the limited number of available samples, differ-
ent data subsets were selected for training the AE and
the Lasso regression model, each tailored to its specific
analytical objective. For AE training, patch images were
sampled from five randomly selected patients.

This approach aims to ensure sufficient generalization
performance of the encoder using a minimal dataset.
Patch images from one additional patient are used for val-
idation. To prevent data leakage, patients used in AE
training are excluded from the Lasso regression dataset.

For Lasso regression, stratified random sampling is ap-
plied to maintain class balance across mRS scores and to
suppress the decline in learning accuracy caused by data
imbalance. Up to 13 patients were selected per class, based
on the number of patients in the third most frequent class
(mRS = 2). Table 2 summarizes the number of patients
used for AFE training, AE validation, and Lasso regression.

4.2 Autoencoder training

The AE is trained with the following parameters: the
batch size is set to 64, Adam [12] with a learning rate of
0.001 is used as the optimizer, the L? loss is utilized as
the loss function, and the number of epochs is set to 50 to
prevent overfitting.

Figure 3 shows an example of the reconstruction when
the data for evaluation is input. After comparing before

FIGURE 3. Comparison of original input patches (top row) and
corresponding reconstructed patches (bottom row).

and after reconstruction, we determined that the gener-
alization performance was satisfactory, so we will use the
learned AE in subsequent experiments.

4.3 Lasso regression and heat-map analysis

The Lasso regression is trained using the following pa-
rameters: the regularization term weight is set to 0.1, and
the maximum number of iterations is 10,000 to ensure
convergence. The model’s performance is evaluated using
the coefficient of determination (R?), which quantifies the
agreement between the predicted values and the ground
truth mRS scores. An R? value closer to 1 indicates bet-
ter model explanatory power.

In this analysis, the Lasso regression achieved an R?
score of 0.8427, suggesting that the trained model ef-
fectively captured pathological features related to mRS
scores. It is considered that the features from pathological
images adequately reflect the differences in mRS and that
the regression analysis is able to extract their relevance.
These results indicate that the image-derived features suf-
ficiently reflect inter-patient differences in mRS, and that
Lasso regression successfully modeled their relationship.

To further examine the model’s predictive behavior, a
confusion matrix is generated by discretizing the contin-
uous prediction outputs. As shown in Fig. 4, the model
achieved particularly high accuracy for mRS scores of 1
and 2, indicating strong predictive performance in these
categories. Furthermore, most misclassifications occurred
between adjacent mRS classes, reflecting the ordinal na-
ture of the mRS scale. This pattern suggests that the
model captures the gradation of functional severity and
demonstrates its potential to make clinically meaningful
estimations from pathology-derived features.
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FIGURE 4. Confusion matrix of predicted vs.
mRS scores.

ground truth

Additionally, a heatmap is created to visualize the pre-
dictive score of the Lasso regression for pathological im-
ages using the learned regression model. An example is
shown in Fig. 5, with brighter colors in the heat-map indi-
cating higher scores. These visualizations revealed regions
with concentrated high prediction values across multiple
images. If such high-scoring regions correspond to known
pathological abnormalities or specific tissue distributions,
this method could provide insights into the associations
between localized pathological features and clinical out-
comes such as the mRS.

5. Conclusions

In this paper, data mining is performed to predict the
mRS score, which represents patient outcomes, based on
features extracted from pathological images. Features are
extracted from pathological images using an AE and ana-
lyzed using Lasso regression to investigate the relationship
between the images and mRS scores. The obtained R?
score was as high as 0.8427, suggesting that the features
extracted through AE retained relevant information re-
lated to the mRS. However, they may reflect local patterns
that are overfit to the training data, and future studies
should evaluate the generalization performance of models
using different datasets. Additionally, heatmaps created

using the learned regression model identify areas of con-
centration of high-scoring regions in pathological images.
This demonstrates the potential for analyzing the associ-
ation between pathological images and clinical indicators.
We believe that the results of this paper provide a basis
for predicting patient prognosis from pathological images
and help to better understand the relationship between
pathological features and clinical factors.
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