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Abstract:
Sperm DNA fragmentation (SDF) is a key indicator of male

infertility. However, standard diagnostic methods such as the
TUNEL-FACS (Terminal deoxynucleotidyl transferase dUTP
Nick End Labeling combined with Fluorescence-Activated Cell
Sorting) assay are invasive and require specialized equipment.
This study proposes a non-invasive deep learning framework
that estimates SDF values directly from sperm motion videos
captured using standard phase-contrast microscopy. Each
video was divided into overlapping 8-frame clips using a sliding
window to capture temporal dynamics. Two model architec-
tures, 3D ResNet and TimeSformer, were evaluated under vari-
ous preprocessing strategies designed to enhance sperm visibil-
ity and suppress background noise. To obtain the most effective
video-level prediction method, we conduct a comparative anal-
ysis of three aggregation methods: mean, median, and best ag-
gregation. TimeSformer with spatial preprocessing and median
aggregation achieved the best practical performance. Although
the best aggregation method achieved relatively high accuracy,
the overall performance remains insufficient for clinical applica-
tion. This result suggested that intelligent clip selection could
enhance prediction reliability. The proposed method presents
a stain-free, non-invasive, and promising alternative to conven-
tional SDF testing.
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1 Introduction

Infertility is a significant global health concern, with
male-related factors contributing to approximately half of
all cases. According to the World Health Organization, an

estimated 17.5% of the adult population experience infer-
tility at some point in their lives [1]. Among the various
contributing factors, sperm DNA fragmentation (SDF),
characterized by DNA damage within sperm cells, has
been shown to negatively correlate with fertilization rates,
embryo development, and pregnancy outcomes [2, 3, 4].

One of the most widely used techniques for assessing
SDF is the terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) assay combined with flow cy-
tometry, known as TUNEL-FACS [5]. While this method
provides clinically validated accuracy, it is invasive, re-
quires chemical staining, and depends on specialized lab-
oratory equipment. These limitations restrict its practi-
cality for routine screening. Moreover, the sperm cells
tested cannot be used in assisted reproductive technolo-
gies, rendering the method unsuitable for real-time sperm
selection [6].

To overcome these challenges, recent studies have ex-
plored non-invasive approaches based on artificial intel-
ligence and label-free imaging techniques. For instance,
Noy et al. [7] proposed a method that combines quanti-
tative phase imaging with convolutional neural networks
to predict SDF levels from unstained static sperm images.
Their model achieved over 0.9 of sensitivity and speci-
ficity, demonstrating strong clinical potential. However,
the reliance on static imaging and the need for specialized
hardware may limit its widespread adoption.

In this study, we propose a practical and accessible ap-
proach that leverages standard phase-contrast microscopy,
which is commonly available in fertility clinics, along with
deep learning to predict SDF values from sperm motion
videos. Previous studies have suggested that dynamic fea-
tures of motile sperm are indicative of overall sperm qual-
ity [9], and deep learning has shown promise in the analysis



of medical video data [8].
We evaluate two deep learning architectures, namely

3D convolutional neural networks (3D CNN) and Trans-
former, using microscopic sperm motion videos. To im-
prove input quality and emphasize motile sperm, we im-
plement four preprocessing strategies, including resizing
frames to 224×224 pixels, spatial cropping into non-
overlapping clips, median filtering, and threshold-based
binarization to extract sperm heads, and background sub-
traction to eliminate static components.

The prediction performance of deep learning models are
assessed for both regression and binary classification tasks.
For regression, prediction accuracy is evaluated using the
root mean squared error (RMSE). Binary classification is
conducted by applying the clinically relevant threshold of
10 to the predicted continuous SDF values, in order to
distinguish between low and high levels of DNA fragmen-
tation. The proposed non-invasive framework has the po-
tential to reduce cost, time, and patient burden, and may
serve as an effective pre-screening tool prior to in vitro
fertilization (IVF).

2 Subjects and Materials

This study aims to develop a non-invasive deep learning
framework that predicts sperm DNA fragmentation (SDF)
from microscopic sperm motion videos, using correspond-
ing clinically measured SDF values as ground truth. The
dataset was collected from 224 adult male patients, aged
between 20 and 55 years, who provided semen samples
during standard clinical evaluations or infertility treat-
ments. The study protocol was approved by the insti-
tutional ethics committee of Mie University Hospital, and
informed consent was obtained from all participants.

To ensure data quality, samples were excluded if sperm
were not visible under the microscope or exhibited min-
imal motility. Specifically, the average pixel intensity
change was computed for each video, and 39 videos were
excluded based on an average motion value below a pre-
defined threshold, ensuring the exclusion of samples with
insufficient sperm motility. As a result, a total of 185
videos were retained in the experiment.

All videos were acquired using a standard phase-
contrast microscope, with a resolution of 672 by 522 pixels
and a frame rate of 15 frames per second. Each video had
a duration of 3 seconds, and one video was collected per
subject. This acquisition setting was designed to reflect
the constraints and conditions typical of real-world clinical

FIGURE 1. Example frame from a raw video recorded under
phase-contrast microscopy (672 by 522 pixels).

environments, without requiring specialized equipment.
SDF values were measured using the TUNEL-FACS

method [5]. The resulting SDF scores ranged from 0 to
100 and were treated as continuous variables for regres-
sion analysis.

The dataset of 185 videos was partitioned into training
(129 videos), validation (28 videos), and test (28 videos)
subsets. The division was performed at the subject level
to avoid data leakage, ensuring that no individual’s data
appeared in more than one subset. This approach sup-
ports a reliable evaluation of the model’s generalization
capability.

3 Proposed Method

This study presents a deep learning framework for
predicting SDF values from microscopic sperm motion
videos. Two model architectures, 3D ResNet and TimeS-
former [10], are proposed along with four preprocessing
strategies designed to capture both spatial and temporal
features of sperm motility.

3.1 Data Preprocessing

Each input video had a resolution of 672×522 pixels,
recorded over 3 seconds at 15 frames per second, resulting
in a total of 45 frames. To enhance temporal variability
and augment the training data, a sliding window technique



FIGURE 2. Example frame after applying Preprocessing D.

was applied to extract 8-frame clips with a stride of 4
frames. This process yielded 10 clips per video, each with
a shape of 3 channels, 8 frames, and 672×522 pixels.

As the pre-processing for the extracted clip, four pre-
processing strategies were explored:

• Preprocessing A: Resizing the original frame to
224×224 pixels size using bilinear interpolation.

• Preprocessing B: Dividing the original clip into six
non-overlapping 224×224 pixels clips.

• Preprocessing C: Same as B, with additional median
filtering and binarization using a threshold of 25 to
isolate sperm heads.

• Preprocessing D: Same as C, with background sub-
traction to remove static components prior to bina-
rization.

3.2 Model Architecture

For the comparison, the proposed method employs two
model architectures, 3D ResNet and TimeSformer, and
evaluates their performance. Each model receives input
clips of 8 frames of 3-channel 224×224-pixel images and
predicts a single continuous value representing the SDF.
Both models were initialized with weights pre-trained
on the Kinetics-400 video dataset and subsequently fine-
tuned on the SDF dataset.

3.3 Training Procedure

The models were trained using mean squared error
(MSE) as the loss function and the Adam optimizer. The
batch size was set to 16. Learning rates were 0.0001 for
3D ResNet and 0.00005 for TimeSformer. Early stopping
was applied when validation loss did not improve for 20
consecutive epochs.

3.4 Clip Aggregation and Video-Level Prediction

From each video, 10 overlapping clips were generated.
In Preprocessing B, C, and D, these clips were extracted
from each of the six spatially segmented regions, increasing
clip diversity. To obtain a single prediction per video, the
following aggregation methods are compared:

• Mean: The average of all clip-level predictions.

• Median: The median of all clip-level predictions.

• Best: The prediction closest to the actual SDF label.
The “best” aggregation is not applicable in real-world

scenarios, as it assumes access to the ground truth. How-
ever, it provides an upper bound for performance estima-
tion and reveals the potential of clip selection techniques.

3.5 Binary Classification

For binary classification, video-level predictions are
thresholded at 10 based on expert clinical recommenda-
tions:

• Class 0 (Low SDF): SDF value less than or equal to
10, indicating high fertility potential.

• Class 1 (High SDF): SDF value greater than 10, in-
dicating low fertility potential.

This threshold reflects a clinically meaningful distinc-
tion between fertile and subfertile patients and is consis-
tent with existing fertility evaluation guidelines.

4 Experiment

We evaluated the proposed framework using two model
architectures (3D ResNet and TimeSformer), four prepro-
cessing strategies (A–D), and three video-level aggregation
methods (mean, median, and best). The purpose of these
experiments was to investigate the effect of each design
choice on both regression and binary classification perfor-
mance.



TABLE 1. Model performance under different preprocessing and aggregation conditions (excluding “Best” aggregation).
(A: Resize, B: Spatial crop, C: Spatial crop followed by binarization, D: Spatial crop followed by background subtracted binarization.)

Model Preprocessing Aggregation RMSE Precision Recall F1
3D ResNet A Mean 9.34 0.545 0.8 0.649

A Median 9.44 0.565 0.867 0.684
B Mean 8.37 0.565 0.867 0.684
B Median 8.37 0.545 0.800 0.649
C Mean 9.00 0.536 1.00 0.698
C Median 9.00 0.536 1.00 0.698
D Mean 9.00 0.536 1.00 0.698
D Median 8.71 0.519 0.933 0.667

TimeSformer A Mean 9.73 0.556 1.00 0.714
A Median 9.73 0.556 1.00 0.714
B Mean 8.31 0.476 0.667 0.556
B Median 8.26 0.476 0.667 0.556
C Mean 8.96 0.536 1.00 0.698
C Median 8.96 0.536 1.00 0.698
D Mean 9.22 0.536 1.00 0.698
D Median 9.03 0.536 1.00 0.698

TABLE 2. Model performance with “Best” aggregation (reference upper bound).

Model Preprocessing Aggregation RMSE Precision Recall F1
3D ResNet A Best 7.30 0.625 1.00 0.769

B Best 6.14 0.652 1.00 0.789
C Best 9.00 0.536 1.00 0.698
D Best 5.22 0.625 1.00 0.769

TimeSformer A Best 7.21 0.577 1.00 0.732
B Best 3.93 0.938 1.00 0.968
C Best 3.73 0.600 1.00 0.750
D Best 2.02 0.938 1.00 0.968

4.1 Experimental Setup

The dataset, comprising 185 videos, was partitioned into
training (129 videos), validation (28 videos), and test (28
videos) subsets at the subject level to prevent data leak-
age. In Preprocessing A, this procedure yielded 10 clips
per video. In contrast, the other preprocessing strategies
produced 60 clips per video by dividing each frame into
multiple spatial regions before temporal sampling. Mod-
els were trained on the training set, hyperparameters were
optimized using the validation set, and the final evaluation
was conducted using only the test set.

4.2 Evaluation Metrics

Two evaluation metrics were employed based on the
task: regression and binary classification.

For regression, performance was assessed using RMSE,
which quantifies the average deviation between the pre-
dicted and the ground truth SDF values. Lower RMSE
values indicate more accurate predictions.

For classification, a threshold of 10 was used to divide
SDF values into two classes: low and high fertility po-
tential. Performance was evaluated using three standard
metrics: precision, recall, and F1-score. Precision is the
ratio of correctly predicted positive cases to all positive
predictions. Recall is the proportion of actual positive
cases correctly identified. F1-score is the harmonic mean
of precision and recall, representing a balance between the
two.

These metrics provide a comprehensive evaluation of
model performance for both continuous regression and
categorical classification tasks.

4.3 Results

Table 1 summarizes the regression and classification per-
formance for all combinations of models, preprocessing
strategies, and aggregation methods, excluding the “Best”
aggregation, which assumes access to ground truth labels.
To estimate an upper bound of model performance, the
results using “Best” aggregation are separately presented
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FIGURE 3. Scatter plot of predicted vs. ground truth SDF
values using mean aggregation.

in Table 2.
In the regression task, both models achieved lower

RMSE values when spatial preprocessing (B, C, and D)
was applied compared to simple resizing (A). Among the
practical configurations, TimeSformer with Preprocessing
B and median aggregation achieved the lowest RMSE.

In the classification task, the highest F1-score among
feasible settings was 0.714, obtained by TimeSformer with
Preprocessing A using either mean or median aggregation.
Under the best aggregation setting, which selects the pre-
diction closest to the ground truth and is not applicable
in practice, TimeSformer achieved the highest overall per-
formance with a RMSE of 2.02 and a F1-score of 0.968.

Scatter plots of predicted versus ground truth SDF val-
ues under mean aggregation and best aggregation are pre-
sented in Fig. 3 and 4, respectively. In both figures, the
x-axis denotes the ground truth SDF value, and the y-axis
represents the model prediction. The diagonal line indi-
cates perfect prediction, facilitating visual assessment of
model accuracy.

As seen in Fig. 3, predictions obtained by mean aggre-
gation exhibit considerable variance around the perfect
prediction line, particularly in the mid-range SDF values.
In addition, a noticeable clustering of predictions is ob-
served around the 10–20% SDF range, indicating a bias of
the model toward lower SDF values. Conversely, Figure 4
demonstrates a substantially tighter distribution along the
diagonal line, as it assumes the availability of ground truth
during aggregation, thereby providing an upper bound on
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FIGURE 4. Scatter plot of predicted vs. ground truth SDF
values using best aggregation.

achievable performance.

5 Conclusion

This study proposed a deep learning-based frame-
work for estimating sperm DNA fragmentation (SDF)
using phase-contrast microscopic videos. We evaluated
two model architectures—3D ResNet and TimeSformer—
under four different preprocessing strategies and three clip
aggregation methods.

In regression tasks, TimeSformer combined with Pre-
processing B and median aggregation achieved the best
performance among practical settings. In binary classifi-
cation, strong performance was also observed when using
Preprocessing A with both mean and median aggregations.
These findings suggest that TimeSformer is effective across
both regression and classification tasks. Furthermore, the
similarity in results between mean and median aggregation
indicates that both methods are suitable for summarizing
clip-level predictions.

The best overall performance was observed with TimeS-
former using Preprocessing D and the best aggregation
method (RMSE of 2.02 and F1-score of 0.968). However,
this method relies on selecting the clip with the closest pre-
diction to the ground truth, requiring prior knowledge of
the actual SDF value. While not feasible in clinical prac-
tice, this result highlights the potential of identifying in-
formative video segments. With further enhancements—
such as attention-based or confidence-driven selection



mechanisms—this approach may evolve into a practical
clinical tool.

Importantly, the proposed method provides a stain-free,
non-invasive alternative to conventional SDF testing, po-
tentially reducing cost, time, and patient burden.

For future work, we plan to extend this framework to
a multimodal learning approach by integrating clinical
data—such as patient age, body metrics, smoking history,
and semen analysis parameters (e.g., sperm concentration,
motility, morphology)—with video-based features. This
integration is expected to improve prediction accuracy and
enhance clinical interpretability by capturing a broader
spectrum of factors associated with sperm DNA integrity.
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