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Abstract: 
Intracytoplasmic sperm injection (ICSI) is a widely used 

infertility treatment, but its success depends on various factors, 

including smooth endoplasmic reticulum clusters (sERCs) in 

oocytes. However, evaluation of sERCs is often subjective, 

leading to inconsistent findings across studies. To address this 

issue, this study proposes an objective approach using 

DeepLab, a deep learning-based segmentation model, to 

analyze regions of sERC, oocyte, and needle in ICSI procedure 

videos. A DeepLab model was trained to segment these regions, 

and features were extracted automatically to assess their 

consistency with manual annotations. Key metrics such as 

sERC circularity and area ratio showed good agreement, while 

features involving needle tip position and small-scale values 

showed larger relative errors due to boundary detection 

challenges. Despite these limitations, the results demonstrated 

that this method provides a reliable foundation for consistent, 

quantitative analysis in ICSI studies and may support more 

standardized assessments of factors influencing treatment 

outcomes. 
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1. Introduction 

In contemporary Japan, declining birthrates have 

become a serious social issue, and this trend has led to 

increasing public interest in infertility treatments. Among 

these, intracytoplasmic sperm injection (ICSI), in which a 

single sperm is directly injected into an oocyte, has 

attracted considerable attention. ICSI is considered one of 

the most promising methods of artificially assisting 

fertilization. The method can theoretically achieve 

fertilization with a single sperm by delivering it directly 

into the cytoplasm of an oocyte. Furthermore, it reduces the 

risk of polyspermy by enabling complete control over the 

fertilization process. The method has a high fertilization 

rate of approximately 40% to 60% [1]. 

It is known that various factors influence the success 

of ICSI. Understanding and managing these factors 

appropriately is crucial for improving treatment outcomes. 

Previous studies have highlighted the importance of oocyte 

quality in determining ICSI success [2, 3, 4]. Oocyte 

morphology [2], maternal age [3], and the presence of 

ovarian stimulation techniques [4] have been reported as 

common assessment indicators. The present study focuses 

on smooth endoplasmic reticulum clusters (sERCs), which 

are considered a key factor in the success of ICSI. sERCs 

are vesicular structures observed in oocytes. Figure 1 shows 

an example of the sERC in an oocyte, where a region of the 

sERC is enclosed by a red dotted line. A study reported that 

oocytes with sERCs have lower fertilization and pregnancy 

rates, as well as delayed embryo development [5]. It also 

suggested that the size and distribution of sERCs may 

influence ICSI outcomes. However, another study found no 

significant correlation between the presence of sERCs and 

the success of ICSI [6]. In addition, this study reported no 

direct link between sERCs and chromosomal abnormalities 

in embryos. The observed inconsistency can be attributed to 

the inherent subjectivity of sERC evaluation, which is 

contingent upon the expertise of seasoned embryologists. 

Moreover, the heterogeneity of patient populations and the 

constraints of limited sample sizes are likely contributing 

factors to these disparate findings. 

The application of artificial intelligence (AI) 

technologies is expected to contribute to solving this issue. 

In our previous work, we conducted evaluations of the 

oocytes and uterus in the context of infertility treatment 

using AI-based approaches [7, 8]. In the present study, we 

apply AI techniques to the analysis of sERCs. Segmentation 

technologies based on AI, particularly deep learning, are 

capable of accurately extracting complex morphological 

structures. These techniques offer a promising approach for 



 

 

the objective evaluation of sERCs and oocyte regions. In 

this study, we aim to develop a reliable method to analyze 

the shape of sERCs in ICSI procedure videos. We use 

DeepLab [9], a deep learning-based segmentation method, 

to extract the regions of sERC, oocyte, and needle. We call 

the results from automatic segmentation “automatic 

extraction” and the results from manual annotation “manual 

extraction” to compare the two methods. By comparing 

automatic extraction with manual extraction, we evaluate 

the accuracy and reliability of our method. 

Although intersection over union (IoU) is useful for 

measuring the overlap of regions, it does not show 

differences in size, shape, or angle. These differences are 

important for understanding how sERCs affect the success 

of ICSI. Since our future studies will investigate the 

relationship between sERC, injection methods, and 

pregnancy outcomes using these feature values, it is 

important that the automatically extracted features closely 

match those obtained manually. If the feature values are too 

different, they may affect the results of the future studies. 

Therefore, we compare these feature values to make sure 

the automatic extraction method is reliable in studies with 

large numbers of data. 

Our main goal is to find an objective and repeatable 

way to measure these feature values. Traditional methods 

rely on subjective judgment, which can lead to mistakes. By 

using a numerical and automatic approach, we aim to make 

the measurement process more standardized. Efficiently 

processing large amounts of ICSI data should help us find 

patterns in sERC characteristics and how they relate to 

pregnancy outcomes. We need to make sure that the feature 

values we extract are reliable. So, in this study, we compare 

the feature values from automatic and manual extraction to 

calculate the error and check their reliability and 

consistency. 

 

 

FIGURE 1. sERC in oocytes 

2. Methods 

In this study, we compare the feature values calculated 

from automatic and manual extraction results to evaluate 

the accuracy of the proposed automatic extraction method. 

In this section, we describe the dataset, the segmentation 

model, the feature values, and the evaluation methods. 

2.1. Dataset 

In this study, we used video data recorded at a 

Reproduction Clinic. The videos were recorded in WMV 

format (resolution: 480×640 pixels), and data from 11 cases 

were collected. The video lengths ranged from 38 to 89 

seconds, with an average of 52.6 seconds. For dataset 

construction, one frame was extracted every second (24 

frames) from each video and used as a still image. Table 1 

shows the number of images per case. 

Regions of sERC, oocyte, and needle were annotated 

manually using LabelMe [10], an open-source annotation 

tool. Figure 2 shows an example of an annotated image. 

The green region indicates sERC, the red region indicates 

the oocyte, and the yellow region indicates the needle. 

Annotation involved drawing polygons to appropriately 

identify each region and labeling them as “sERC,” 

“oocyte,” and “needle.” 

TABLE 1. Number of images for each case 

Case Number of images 

1 49 
2 50 

3 65 

4 45 
5 43 

6 49 

7 89 
8 38 

9 48 

10 50 
11 53 

 

 



 

 

 

FIGURE 2. Annotated image 

2.2. Segmentation Model 

In this study, we used DeepLab, a segmentation 

method, to automatically extract regions of sERC, oocyte, 

and needle. For DeepLab training, the annotated dataset 

was divided using leave-one-out cross-validation, where 

one case was used as the test dataset, and the remaining 

cases were used for training. This process was repeated for 

all 11 cases, ensuring that each case was used once as the 

test set. Training hyperparameters included a batch size of 4, 

25,000 steps, an optimization method of Adam, and a 

learning rate of 0.00001. We employed a pre-trained 

DeepLab model composed of ResNet-50 trained using the 

ImageNet published in reference [11]. 

To visualize the progress of the training, the loss 

values were recorded, and a learning curve was created. 

The learning curve shown in Figure 3 represents the 

average loss across all training iterations. The vertical axis 

indicates the loss relative to the training or test data, and the 

horizontal axis represents the number of steps. The blue line 

represents the average learning curve for the training data. 

The loss decreased rapidly in the early stages of training 

and tended to converge after approximately 10,000 steps. 

This result indicates that the number of training iterations 

was sufficient. 

 

 

FIGURE 3. Learning curve 

2.3. Feature Value Extraction 

In this study, we employed four types of feature 

values—circularity of sERC, area ratio of sERC and oocyte, 

x-axis distance from center of oocyte to top of needle, and 

y-axis distance from center of oocyte to top of needle—to 

evaluate ICSI. These feature values were selected based on 

previous studies and materials [6, 12]. In this study, we 

denoted these feature values as f1 to f4, and they were 

calculated as follows.  

f1 = 4π × Ss / Ls
2 (1) 

f2 = Ss / So (2) 

f3 = Cox - Tnx (3) 

f4 = Coy - Tny (4) 

Here, the notations Ss and So denote the areas of the sERC 

and the oocyte, the notation Ls denotes the perimeter of the 

sERC, the notations Cox and Coy denote the x- and 

y-coordinates of the center of the oocyte, and Tnx and Tny 

denote x- and y-coordinates of the top needle. These values 

were calculated from mask images showing the regions of 

sERC, oocyte, and needle. 

 

2.4. Comparison with Automatic and Manual Extractions 

Relative error of each feature value was used to 

compare manual and automatic extraction results. Relative 

error was calculated using the following equation. 

Relative Error = (|A - M| / M) × 100 (5) 

Here, notation A denotes the automatically extracted value 

of the feature values, and notation M denotes the manually 

extracted value. 



 

 

3. Experiments 

3.1. Segmentation Experiments 

Figure 4 shows the results of Case 1 as an example of 

the prediction results. Figures 4(a), 4(b), and 4(c) show the 

input image, the ground truth labels (manual annotation 

data), and the output image, respectively. The red region 

indicates the sERC region, the green region indicates the 

oocyte region, and the yellow region indicates the needle 

region. 

IoU is a measure of the overlap between predicted and 

ground-truth regions and was used to evaluate the 

performance of the segmentation model. Table 2 shows the 

average IoU of each case. The average IoU for the entire 

validation data was 0.93. 

 
(a) Input image 

  
(b) Annotated image 

 
(c) Prediction image 

FIGURE 4. Evaluation results 

 

TABLE 2. Average IoU  

 Oocyte sERC Needle Average 

Case1 0.99 0.94 0.95 0.96 

Case2 0.99 0.97 0.80 0.92 

Case3 0.96 0.77 0.93 0.89 

Case4 0.99 0.93 0.94 0.95 

Case5 0.99 0.92 0.86 0.92 

Case6 0.99 0.94 0.90 0.94 

Case7 0.99 0.86 0.92 0.92 

Case8 0.95 0.88 0.91 0.91 

Case9 0.99 0.95 0.94 0.94 

Case10 0.99 0.78 0.96 0.91 

Case11 0.96 0.95 0.92 0.94 

Average 0.98 0.90 0.91 0.93 

3.2. Feature Extraction Experiments 

To compare the automatic and manual extraction 

results, the calculated feature values were evaluated. While 

IoU is useful for assessing spatial overlap, it does not 

capture differences in shape, size, or other morphological 

characteristics. Therefore, comparing feature values allows 

us to evaluate not only the overlap but also the precision of 

the extracted regions’ morphology, which is crucial for 

clinical analysis. 

Table 3 shows the average and standard deviation of 

the relative errors for each feature value of automatic and 

manual extraction. These values are calculated for each 

case. 

TABLE 3. Average and standard deviation of relative errors 

 f1 [%] f2 [%] f3 [%] f4 [%] 

 AVG SD AVG SD AVG SD AVG SD 

Case1 4.56 4.38 5.95 5.09 16.53 46.79 18.46 9.14 

Case2 4.29 5.48 7.42 5.20 3.17 4.58 10.82 3.76 

Case3 3.00 4.44 16.81 22.31 4.30 7.46 59.86 82.96 

Case4 7.18 9.00 29.22 39.43 4.87 13.08 15.60 8.60 

Case5 2.62 4.03 4.60 4.06 2.57 2.04 12.11 8.57 

Case6 3.63 7.04 4.13 2.88 5.29 9.59 19.17 16.43 

Case7 10.36 5.15 10.36 11.96 4.03 4.24 22.61 11.09 

Case8 8.21 8.30 10.36 6.66 12.17 19.12 71.59 49.97 

Case9 7.63 9.51 15.99 9.80 5.33 9.02 27.18 15.78 

Case10 5.14 6.10 10.28 14.58 5.33 7.72 26.73 23.55 

Case11 4.20 4.08 10.24 8.22 1.63 1.92 19.86 13.66 

AVG 5.53 6.14 11.40 11.84 5.93 11.41 27.64 22.14 

AVG: average, SD: standard deviation 

 

 



 

 

4. Discussion 

In this study, the regions of sERC, oocyte, and needle 

were extracted from the same image by both automatic and 

manual methods, and their characteristics were compared 

for application to future studies. As a result, the 

reproducibility of f1 by automatic extraction was high and 

the relative error was small. On the other hand, the relative 

error for f2 tended to be large in some cases. This is due to 

the fact that the value of f1 was 0.6-0.8, while the value of f2 

was 0.025-0.2, so that even a small difference in the feature 

value would result in a large relative error. 

The relative error for f3 was small, but the error tended 

to be larger for f4, and in one case the relative error 

exceeded 70%. Figure 5 shows an image of the region of 

the oocyte and needle in Case 8. The red dot represents the 

center of gravity of the oocyte and the black region 

enclosed by green line represents the area of the needle. 

From this image, it can be visually confirmed that the tip of 

the needle is extremely close to the center of the oocyte. In 

such cases, even a small extraction error can lead to a large 

deviation in the f4 value. 

 

FIGURE 5. Manual extraction image of oocyte and needle 

The boundaries between the oocyte and sERC and the 

background are relatively clear, making it easy to extract 

their centers and contours. However, the tip of the needle is 

hollow and, as shown in Figure 6(a), its boundary with the 

background is very difficult to distinguish. As a result, in 

automatic extraction, the tip may be recognized as rounded, 

leading to a deviation from the true tip position and 

increasing the f4 error. Figures 6(b) and 6(c) show manually 

and automatically extracted images of the needle in Case 8. 

Figure 6(b) shows that the tip of the needle is clearly 

depicted. In contrast, Figure 6(b) shows that the tip of the 

needle has been smoothly rounded off. The red dots in the 

two images are the detected tips, and it can be seen that the 

rounding causes the f4 value to deviate from the actual value. 

The discrepancy between the actual shape and the 

extraction result is the cause of the error. 

Nevertheless, the IoU was high in all regions. The IoU 

was also high for the needle region, which is due to the fact 

that the extraction was very accurate for the areas other than 

the tip. In order to improve the accuracy in the future, it is 

especially important to detect needle tips more accurately. 

For example, it is expected that the tip identification 

accuracy can be improved by enhancing the contour of the 

needle in preprocessing. 

 
(a) Hollow needle tip 

 
(b) Needle region by manual extraction 

 
(c) Needle region by automatic extraction 

FIGURE 6. Needle Image and Corresponding Masks 

 



 

 

5. Conclusion 

This study demonstrated the usefulness of image 

analysis techniques for ICSI. DeepLab was used to isolate 

regions in the image and its accuracy was compared to 

manual extraction. The results showed that the average IoU 

of manual and automatic extraction was 0.93. Comparing 

manual and automatic extraction, there was little difference, 

proving that the DeepLab-based method is as accurate as 

manual. 

Furthermore, by analyzing the feature values of the 

segmented regions, it was confirmed that the size and 

circularity of each region could be measured numerically. 

This enabled us to move from a subjective evaluation based 

on experience to a more reliable and reproducible method. 

Specifically, we quantitatively extracted four types of 

characteristic quantities: circularity of sERC, area ratio of 

sERC to oocyte, x-axis distance from the center of oocyte 

to the top of the needle, and y-axis distance from the center 

of oocyte to the top of the needle. This helps us understand 

how these shapes affect the success rate of ICSI. 

In the future, it will be important to analyze a larger 

dataset to better understand how the shape and position of 

sERC and the needle affect the success rate of ICSI. 

Clarifying these relationships may lead to the development 

of new, objective evaluation criteria, which could help 

improve the accuracy and reliability of infertility 

treatments. 

Furthermore, image analysis using deep learning has 

the potential to process large volumes of medical data 

efficiently. By applying this technology to other areas of 

medicine, it may become possible to support more accurate 

diagnoses and treatment planning. The findings of this 

study suggest that such methods can contribute to more 

effective and standardized medical care. 
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