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Abstract:
Deep learning architectures have profoundly impacted med-

ical image processing by effectively preserving essential spa-
tial information crucial for accurate segmentation tasks. De-
spite enhancements through depth expansion, increased chan-
nels, refined skip connections, or integration of attention-based
modules like Transformers, these approaches typically heighten
computational complexity and limit practical efficiency.

This study introduces a multi-stage cascaded framework
specifically designed for CT-to-PET image conversion, employ-
ing sequentially linked, simplified encoder-decoder modules to
balance simplicity and computational efficiency. Using pub-
licly available lung cancer PET-CT datasets, experimental re-
sults indicate progressive enhancements in image reconstruc-
tion quality across cascade stages. Quantitative metrics, in-
cluding Structural Similarity Index Measure, Peak Signal-to-
Noise Ratio, and Mean Absolute Error, reflect notable improve-
ments, with optimal results reaching an SSIM of 0.9291 and a
PSNR of 28.8474 dB.

Nevertheless, visual inspection reveals residual artifacts
from transposed convolution operations, highlighting the
limitations of pixel-level metrics alone in capturing perceptual
image quality. Hence, the proposed cascaded framework
demonstrates significant potential for clinical PET image
synthesis from CT scans, emphasizing future integra-
tion of comprehensive visual quality and expert evaluations.
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1. Introduction

Encoder-decoder architectures exemplified by U-Net,
have revolutionized medical image processing due to their

capability to effectively capture and reconstruct complex
spatial features. Originally developed for segmentation,
U-Net[?] achieves superior performance through a distinc-
tive symmetrical structure composed of an encoding path-
way and a decoding pathway. This dual-path approach,
combined with strategically placed skip connections[?],
significantly enhances the accuracy of spatial informa-
tion retention during the upsampling process, a crucial
attribute for accurately delineating anatomical structures
in medical imaging.

Increasing the scale of U-Net models can involve deep-
ening the network, increasing the number of feature map
channels, improving skip connection structures, and incor-
porating attention modules like Transformers[?]. While
these enhancements can improve performance, they also
increase model complexity and computational demands
[?], often leading to performance bottlenecks. In this
research, multiple simple encoder-decoder structures are
used to construct a generative network, verifying the per-
formance of multi-stage models in medical image genera-
tion tasks.

The main contributions of this paper include proposing
a multi-stage cascaded extension framework, constructing
multiple multi-stage cascade models with simple encoder-
decoder modules for CT-to-PET image conversion tasks,
validating the effectiveness of this framework through ex-
periments, and presenting performance metrics across var-
ious stages. The specific contributions are:

Proposing a multi-stage cascaded framework utilizing
multiple simple encoder-decoder models for lung CT-to-
PET image conversion tasks without altering individual
encoder-decoder structures.

Experimentally validating the effectiveness of the pro-
posed framework on publicly available paired PET-CT



datasets, showcasing the performance of U-Net models at
each stage, and monitoring various training and testing
metrics.

Visually comparing images generated by different cas-
cade models against real images to explore the effect of
cascading on visual quality.

2 Related Works

Since the introduction of U-Net, it has been extensively
employed due to its structural advantages and excellent
performance in applications such as image denoising[?],
medical image registration, and attenuation correction
[?]. It has also been applied in various other segmenta-
tion tasks including lesion segmentation and facial image
restoration.

Armanious et al. [?] proposed an end-to-end GAN-
based framework for medical image-to-image translation,
demonstrating its performance in PET-CT translation,
MR motion artifact correction, and PET denoising tasks.
Wolterink et al. [?] present a bidirectional MR-to-CT
synthesis framework based on a cycle-consistent genera-
tive adversarial network that operates on unpaired data,
thereby circumventing registration errors and achieving
favorable quantitative performance in experiments with
24 patients. Hu et al.[?] introduce the Squeeze-and-
Excitation Networks, along with variants across face em-
bedding task[?], leverage global information compression
and channel-wise recalibration to adaptively model inter-
channel dependencies, thereby significantly enhancing the
performance of deep networks on a variety of tasks. Dong
et al. [?] propose a context-aware generative adversar-
ial network that integrates a fully convolutional architec-
ture, adversarial training, a gradient-difference deblurring
loss, and an Auto-Context mechanism to directly syn-
thesize high-quality CT images from MRI data. Singh
et al. [?] presented a U-Net-based automated medical
image registration method, employing GAN to generate
pseudo-CT images from non-attenuation-corrected PET
images, enhancing coronary angiography registration ac-
curacy. Liu et al. [?] developed a method for generating
pseudo-CT images for attenuation correction from single
non-attenuation-corrected 18F-FDG PET images. Du et
al. [?] reviewed six U-Net-based methods for medical im-
age segmentation, including lung nodules, cardiac, and
brain segmentation tasks. Zeng et al. [?] used a two-stage
cascaded U-Net for facial image restoration, indicating po-
tential advantages of multi-stage U-Net models for image

generation tasks. Singh and Liu applied models with fine-
tuned modules in medical image registration and attenu-
ation correction, achieving notable results. While Arman-
ious and Zeng utilized cascaded U-Net structures, multi-
stage cascaded U-Net models for medical image generation
remain underexplored. This study evaluates multi-stage
cascaded U-Net models for CT-to-PET image conversion
tasks using several metrics.

3 Method

The proposed methods comprises encoder, decoder, and
visualization modules. The encoder extracts image fea-
tures, the decoder reconstructs these features into out-
put images, and the visualization module converts out-
puts into analyzable visual results. The detailed param-
eter configuration of the encoder–decoder is presented in
Table 1, and its network architecture is illustrated in Fig-
ure 1.

Encoder Block follows the typical architecture of a con-
volutional network. Each encoder block consists of a single
nonlinear activation layer followed by a 4 × 4 convolution
with a stride of 2, which performs spatial down-sampling.
After every down-sampling convolution, the number of
feature channels is typically increased to enrich the repre-
sentational capacity of the network. Formally, the convo-
lutional transform within an encoder block is expressed as
equation (1):

Cc,h,w(X) = bc +
(
Wc ⋆s,p X

)
h,w

(1)

where Cc,h,w is value of the output feature map at
output-channel c and spatial location (h,w). bc is Bias
term added to every element of the cth output channel.
Wc is all convolution kernels associated with output chan-
nel c, a 3-D tensor of shape Cin×K×K. X is Input feature
map of shape Cin ×Hin ×Win ⋆s,p is 2-D convolution op-
erator with stride s and zero-padding p; summations over
input channels and kernel positions are implicit.

The forward computation of a complete encoder block
is abstracted by the mapping:

E(X) = B
(
C
(
N(X)

))
, (2)

where N(·) denotes the non–linear activation function;
C(·) represents the convolutional transformation defined
in equation (1); B(·) stands for the batch–normalization
layer, which stabilizes the distribution of intermediate ac-
tivations; X is Input feature map of shape Cin×Hin×Win.



FIGURE 1. Schematic Diagram of Data Flow Within the Model. The PET image is shown on the left, and the CT image on the
right. The blue modules correspond to the encoder architecture, while the orange modules represent the decoder architecture. The
upper portion of the figure illustrates the fundamental structures of the encoder blocks, decoder blocks, and visualization blocks. The
connections in the lower portion indicate the skip connections.

Equation (2) thus describes a standard Conv–BN pipeline
preceded by a point–wise non–linearity, a design that
has empirically shown strong representational power while
mitigating covariate shift during training.

Decoder Block consists of a cascade of up-sampling
and convolutional operations. Each decoding block in-
corporates a non-linear activation function, a transposed-
convolution layer that performs spatial up-sampling, and
a batch-normalization layer. To alleviate over-fitting, a
dropout layer is appended at the end of the decoder. The
core up-sampling operation is realized by transposed con-
volution and can be formulated as follows:

Tc,h,w

(
X
)
= bc +

Cin−1∑
k=0

(
Wk,c ∗ Us Xk

)
h,w

(3)

where Tc,h,w is element of the output feature map in chan-
nel c at spatial position (h,w). bc denotes bias term asso-
ciated with output channel c. Wk,c represents convolution
kernel of size K×K connecting input channel k to output
channel c. Xk stands for k-th feature map of the input ten-
sor. Us denotes zero-insertion up-sampling operator with
stride s = 2, applied independently along both spatial
dimensions. ∗ represents standard two-dimensional corre-
lation with stride 1, no padding. Cin stands for number of



input channels.
The forward computation of a complete decoder block

is abstracted by the mapping:

D(X) = Dropd
(
B
(
T
(
N(X)

)))
(4)

where Drop(·) represents the dropout layer function, and d
signifies the dropout rate. N(·) denotes the non–linear ac-
tivation function; T (·) represents the transposed convolu-
tional transformation defined in equation (3); B(·) stands
for the batch–normalization layer, which stabilizes the dis-
tribution of intermediate activations; X is Input feature
map of shape Cin ×Hin ×Win.

Visual Block module, a variant decoder, converts output
features from the decoder module into a visual format. Its
structure is similar to a standard decoder but lacks skip
connections and employs different nonlinear functions, en-
hancing visual analysis. The forward computation of a
whole visual block can be described as follows:

V (X) = T
(
N(X)

)
(5)

where T (·) represents the transposed convolutional
transformation defined in equation (3); N(·) denotes the
non–linear activation function, in this case, the tanh func-
tion is used; X is Input feature map of shape Cin×Hin ×
Win; V (·) stands for the visualization block, which con-
verts the output features into a visual format.

3.1 Cascaded Expansion Framework

This study introduces a cascaded expansion framework
using multiple encoder-decoder structures cascaded se-
quentially. Each encoder-decoder output becomes the in-
put for the subsequent stage, refining features progres-
sively. This approach enhances model accuracy by captur-
ing richer feature information at each stage. Although the-
oretically possible, segmented optimization strategies for
different stages are not explored further here. Addition-
ally, a Dual Stage Generator GAN (DSGGAN) with dense
connections and segmented optimization mechanisms is
introduced to capture stage-specific features more effec-
tively. Table 2 details model parameter counts.

4 Experiments

This study employs the encoder-decoer architecture for
cross-modality medical image conversion tasks, specifi-
cally to construct a U-Net that inputs a CT image and

TABLE 1. Architecture Configuration of the Encoder-Decoder
Modules

Block Name Input Output Trans Dropout
Encoder 1 3 16 - -
Encoder 2 16 24 - -
Encoder 3 24 42 - -
Encoder 4 42 81 - -
Encoder 5 81 114 - -
Encoder 6 114 162 - -
Encoder 7 162 162 - -
Encoder 8 162 960 - -
Decoder 1 960 960 162 0.5
Decoder 2 1122 162 162 0.5
Decoder 3 324 114 114 0.5
Decoder 4 228 81 81 -
Decoder 5 162 42 42 -
Decoder 6 84 24 24 -
Decoder 7 48 16 16 -

Visual Block 32 3 - -
”Input” and ”Output” denote the number of input and
output channels, respectively; ”Trans” specifies the num-
ber of channels involved in skip connections; The design
of the model’s channel parameters was informed by the
MobileNetV3 architecture[?].

converts it into a corresponding PET image. In this re-
search, the lung PET or CT scan data were powered by
the National Cancer Institute Cancer Imaging Program
(CIP) [?]. The dataset encompasses 251,135 lung scan im-
ages from 355 subjects, primarily collected between 2009
and 2011, including each subject’s gender, age, weight,
smoking history, and cancer diagnosis classification. All
scan data in the dataset are stored in DICOM format.
This study processed these 251,135 scan data using the Mi-
croDicom software on a Windows operating system. The
subjects in the dataset are labeled according to the type of
cancer: Type A for adenocarcinoma, Type B for small cell
carcinoma, Type E for large cell carcinoma, and Type G
for squamous cell carcinoma. Not all subjects’ data include
both PET and CT scans. Therefore, this study selected
imaging data from 38 confirmed Type B small cell carci-
noma patients, including PET scans with CT scans, and
fused enhanced images, resulting in 464 PET/CT pairs.
Data was divided into trainingand testing sets, detailed in
Table 3.

The optimization employed Mean Squared Error and
adversarial loss functions [?], utilizing Adam optimizer[?]



TABLE 2. Model Parameter Counts for Different Generator
Architectures

Architectures Parameters
U-Net[?] 54.41

Cas-UNet[?] 108.82
DualStageGGAN[?] 92.54

Stage01 22.13
Stage02 44.26
Stage03 66.39
Stage04 88.52
Stage05 110.65
Stage06 132.77
Stage07 154.90
Stage08 177.03
Stage09 199.16
Stage10 221.29

This table presents the parameter scales of
various generator networks. The number of
parameters is reported in millions.

TABLE 3. Dataset Partitioning Scheme Used in the Experi-
ments

Params count Test Train Total
Lung PET/CT Pair 64 400 464

Total Images 128 800 928

with a learning rate of 0.001 for gradual convergence. Op-
timal experimental results are listed in Table 4.

Metrics including SSIM, PSNR, and MAE were
recorded over 200 training epochs, revealing high perfor-
mance across training and testing datasets. Stage07 and
Stage10 models exhibited higher SSIM and PSNR values,
indicating superior reconstruction quality.

Figure 2 illustrates SSIM rapidly increasing in initial
training (first 25 epochs), stabilizing around 0.9. DSG-
GAN exhibited fluctuations possibly due to overemphasis
on high-dimensional features, but overall SSIM remained
high.

PSNR (Figure 3) showed rapid initial improvements
with subsequent fluctuations, particularly in 8-, 6-, 4-, and
3-stage models, indicating potential generalization issues
with complex data or smaller datasets. Overall, PSNR
remained consistently good.

The MAE curve in Figure 4 declines steeply at the be-
ginning of training, indicating rapid parameter adapta-
tion. Nevertheless, all models converge to uniformly low
MAE scores for two principal reasons: (i) the PET intensi-

TABLE 4. Max SSIM,PSNR,MAE Results of Experiment

Stage Count SSIM PSNR MAE
U-Net 0.9149 27.7411 0.0119

Cas-Unet 0.9182 27.9950 0.0109
DSGGAN 0.9122 28.7630 0.0106
1 Stages 0.9006 28.3584 0.0119
2 Stages 0.9122 28.5897 0.0110
3 Stages 0.9030 28.7249 0.0105
4 Stages 0.9160 28.1237 0.0110
5 Stages 0.9243 28.1736 0.0111
6 Stages 0.9237 28.1355 0.0105
7 Stages 0.9291 28.2716 0.0103
8 Stages 0.9134 28.4860 0.0119
9 Stages 0.9248 28.4371 0.0108
10 Stages 0.9288 28.8474 0.0103

ties are normalized to the [0,1] range, and (ii) dark pixels
constitute the majority of each image. Consequently, a
well‑trained network quickly discovers that synthesizing
images with a disproportionately large share of near‑black
pixels is an efficient way to minimize the MAE objec-
tive. Despite these encouraging numbers, a lower MAE
does not necessarily translate into superior perceptual
quality. Hence, complementary visual‑comparison experi-
ments are required, as purely numerical metrics provide
an incomplete—and potentially misleading—assessment
of image fidelity.

Visual comparisons (Figure 5) indicated pixel-level met-
rics differed from perceived quality, highlighting artifacts
in certain stages due to transpose convolutions. Quantita-
tive metrics did not fully reflect visual quality, underscor-
ing the need for expert evaluations or prior knowledge. Al-
though the Stage10 and DSGGAN models attained ex-
cellent quantitative scores, the images they produced
were noticeably blurred. DSGGAN, in particular, exhib-
ited strong numerical performance yet fell short in visual
fidelity—a deficiency that may arise from its distinctive
skip‑connection design, which can overfit when confronted
with complex data or limited sample sizes. These results
underscore that pixel‑level metrics alone cannot fully cap-
ture perceptual quality; a more comprehensive evaluation
that integrates expert judgment or domain‑specific priors
is therefore essential. By contrast, the Stage07 network
delivered competitive quantitative results while produc-
ing images of comparatively higher visual quality. Overall,
our proposed frameworks indicate that cascade‑based ex-
tensions can achieve robust performance in medical image



FIGURE 2. Evolution of SSIM During Testing Across Epochs. The horizontal axis represents epoch numbers from 0 to 200), and the
vertical axis indicates the SSIM values achieved by the model on the test dataset.

FIGURE 3. Evolution of PSNR During Testing Across Epochs.
The horizontal axis represents epoch numbers from 0 to 200,
and the vertical axis indicates the PSNR values in dB achieved
by the model on the test dataset.

synthesis, but they also reveal intrinsic limitations that
warrant further investigation.

FIGURE 4. Evolution of MAE During Testing Across Epochs.
The horizontal axis represents epoch numbers from 0 to 200,
and the vertical axis indicates the MAE values achieved by the
model on the test dataset.

5 Conclusion

The proposed cascaded framework effectively enhanced
performance and demonstrated stability. Future stud-
ies should integrate visual quality assessments and expert
evaluations to increase practical utility in medical image



FIGURE 5. The figure displayed here showcases PET images generated by various models, compared alongside real CT and PET
images. The odd rows present the complete paired PET-CT images, while the even rows provide magnified views of specific regions
within these pairs. Each model utilizes the CT image located at the extreme left as the input. The real PET images positioned at the
extreme right serve as references for comparison.

translation tasks. The study’s findings suggest that the
multi-stage cascaded U-Net model can be a valuable tool
for medical image synthesis, with potential applications in
various medical imaging tasks. The results indicate that
the model can effectively learn to generate high-quality im-
ages from CT scans, which could aid in improving diagnos-
tic accuracy and treatment planning in clinical settings.
Further research is needed to explore the model’s perfor-
mance on larger datasets and its applicability to other
imaging modalities.
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