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Abstract: 

Transformer-based segmentation models like OneFormer 
offer strong performance but remain computationally 
expensive for real-time and resource-limited settings. In this 
preliminary work, we propose a modular enhancement of 
OneFormer by integrating the efficient FasterViT backbone 
and lightweight CBAM (Convolutional Block Attention 
Modules). FasterViT introduces Hierarchical Attention for 
scalable, high-resolution processing, while CBAM enhances 
feature saliency through spatial and channel-wise attention 
strategies. We apply CBAM after the initial convolutional 
stage of the encoder and at the pixel decoder’s input 

projections without altering core architecture preserving 
pretraining compatibility. Evaluated on the Cityscapes dataset, 
our approach achieves a promising 77.18 % mean IoU across 
19 classes despite limited training resources. These results 
indicate that hybrid transformers combined with modular 
attention can provide an effective path toward lightweight, 
scalable segmentation models. 

Keywords: 
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1. Introduction 

Semantic segmentation is a fundamental task in 
computer vision that involves assigning a class label to each 
pixel in an image. It plays a vital role in applications such 
as autonomous driving, robotics, and urban planning, where 
detailed scene understanding is crucial for safe and efficient 
decision-making [1], [15]. Recent advancements in 
transformer-based architectures have significantly improved 
the accuracy of segmentation models. Unified architectures 
like OneFormer have gained attention for their ability to 
handle semantic, instance, and panoptic segmentation 
within a single framework, using shared pixel- and 
mask-level decoders. 

Despite their effectiveness, these models come with a 
high computational cost. Large-scale transformers demand 
extensive memory and processing power, which limits their 
applicability in real-time or edge-device scenarios. As the 

demand for deployable vision systems grows, finding the 
right balance between accuracy and efficiency becomes 
increasingly critical. 

1.1. Research Motivations 

While OneFormer achieves state-of-the-art results, its 
use of heavy pixel encoders and transformer decoders can 
make deployment on lightweight or embedded systems 
challenging. At the same time, attention mechanisms like 
CBAM (Convolutional Block Attention Module) have 
shown promise in enhancing model performance with 
minimal overhead by refining spatial and channel-wise 
feature selection. 

To address this gap, we explore whether modular and 
lightweight enhancements can improve segmentation 
performance without significantly increasing computational 
cost. In this work, we propose an architecture that integrates 
the FasterViT backbone a high-throughput, hybrid vision 
transformer with CBAM modules placed strategically 
within both the encoder and decoder stages. This approach 
maintains compatibility with existing pretraining pipelines 
while offering a flexible path to more efficient 
segmentation. 

2. Related Work 

2.1. Vision Transformer and Oneformer 

Vision Transformers (ViTs) [6] apply the transformer 
architecture to images by splitting an image into patches 
and processing them with self-attention. Unlike 
convolutional networks, ViTs can model global context 
across the entire image [14]. They have achieved 
state-of-the-art performance on many vision tasks including 
classification, object detection, and semantic segmentation 
[14] because self-attention captures long-range 
dependencies that are important for understanding scenes. 
In semantic segmentation, for example, ViTs can integrate 
information from distant parts of the image to better 



 

 

delineate objects. However, pure ViT models tend to be 
extremely large and data hungry. Without the built-in 
spatial biases of CNNs, they often require very large 
datasets and many parameters to train effectively [5]. In 
practice, ViTs can have hundreds of millions of parameters 
(e.g. ViT-Huge has ~632M [6]), leading to high 
computational and memory costs.  

OneFormer, a universal architecture for semantic, 
instance, and panoptic segmentation. OneFormer uses a 
single transformer with task-specific conditioning (via text 
prompts) to handle all three tasks in one model [7]. It is 
trained once on a mix of segmentation labels, achieving 
state-of-the-art results on ADE20K [17], CityScapes [3], 
Mapillary Vistas [13] and COCO [10]. Remarkably, a single 
OneFormer model outperforms specialized Mask2Former 
[2] models on each task, despite the specialized models 
being trained separately with three times the resources [7]. 
In summary, OneFormer’s unified design yields excellent 

accuracy across tasks. Nevertheless, like other ViT-based 
segmentation models, OneFormer is very heavy and 
overparameterized. Such models incur high compute costs 
and latency, which can limit their use in practice [7]. 

2.2. Efficient Backbones: FasterViT 

To address the efficiency challenges of large ViTs, 
hybrid CNN-Transformer backbones have been proposed. 
FasterViT is one such architecture designed for high 
throughput and efficiency [5]. FasterViT combines standard 
convolutional blocks in early layers with transformer blocks 
later in the network. Specifically, it uses residual CNN 
layers in the high-resolution stages (stages 1 and 2) and 
switches to transformer blocks in lower-resolution, 
higher-level stages [5]. This hybrid design allows the model 
to quickly extract fine-grained features with convolutions 
and then capture global context with transformers. 

A key innovation of FasterViT is its Hierarchical 
Attention (HAT) mechanism [5]. In each transformer block, 
FasterViT interleaves local windowed self-attention with a 
global “carrier token” attention. Concretely, local 

self-attention is computed within small windows, while a 
set of learned carrier tokens summarize and propagate 
global information across windows [5]. By decomposing 
full self-attention into hierarchical local and global stages, 
HAT captures long-range dependencies at much lower cost 
than naive global attention. The complexity of hierarchical 
attention grows roughly linearly with image resolution, 
making it efficient for high-res inputs [5]. 

Empirically, FasterViT achieves a superior 
accuracy-throughput trade-off on standard vision 
benchmarks. When tested on tasks like classification, object 

detection, and segmentation, FasterViT establishes a new 
Pareto-optimal frontier of accuracy vs. speed [5]. FasterViT 
yields state-of-the-art throughput (images per second) for a 
given accuracy on ImageNet [9], COCO [10], and ADE20K 
[17]. Its high efficiency and strong performance make 
FasterViT especially well-suited for resource-sensitive or 
real-time applications.  

2.3. Attention Modules: CBAM 

The Convolutional Block Attention Module (CBAM) 
is a lightweight CNN attention module that refines 
intermediate feature maps via both channel and spatial 
attention [5]. CBAM applies two sequential attention steps 
to any convolutional feature map: 

Channel attention: The module first aggregates spatial 
information (e.g. using global average and max pooling) to 
compute a 1D attention vector that weighs each feature 
channel by importance [5]. This operation enables the 
network to emphasize ‘what’ feature channels are most 

informative for the task. 
Spatial attention: Next, CBAM infers a 2D spatial 

attention map by pooling along the channel axis and 
applying a small convolution. The resulting mask highlights 
‘where’ in the spatial map the important features lie [5]. 

The channel and spatial attention masks are multiplied 
with the original feature map to adaptively refine it. 
Because CBAM is very lightweight, it adds negligible 
computational overhead and can be easily inserted into any 
CNN layer [5]. In practice, CBAM consistently improves 
CNN performance: for example, adding CBAM to standard 
classification or detection networks yields higher accuracy 
on ImageNet [7] and COCO [10] [8]. 

3. The Proposed Architecture 

Our architecture extends OneFormer, a universal 
segmentation framework that handles semantic, instance, 
and panoptic segmentation using a shared pipeline. We 
modify the pixel encoder to use FasterViT for efficient 
feature extraction, and we enhance salient representation 
learning through CBAM at both early and late stages. To 
preserve compatibility with OneFormer’s architecture, we 

use lightweight adaptation/projection layers (adapter_0, 
projection_1, projection_2, projection_3) that ensure our 
outputs match the pixel decoder’s expected input shapes. 

3.1. Overall Architecture 

We retain OneFormer’s pixel decoder, transformer 
decoder, and task-conditioned mask decoder, but replace 



 

 

the original backbone (Swin [11] and ConvNeXt [12]) with 
FasterViT, a hybrid CNN–transformer model designed for 
fast, high-resolution feature extraction [5]. FasterViT uses 
convolutional residual blocks in early layers (Level 0–1) 
and a transformer-style hierarchical attention mechanism in 
later stages (Level 2–3). This configuration yields 
high-quality multiscale features with improved speed and 
lower parameter counts, making it suitable for resource 
constrained segmentation scenarios. 

We use faster_vit_4_any_res with default config but 
with resolution changed to [512,1024] which is the input 
image size. We build a wrapper module 
FasterVITBackbone around FasterViT that extracts four 
hierarchical feature maps—res2 to res5—aligned with 
OneFormer’s expected inputs. These are passed to the pixel 

decoder, which upsamples and fuses them through 
multi-scale deformable attention [16] before handing them 
off to the shared transformer decoder and task-specific 
segmentation heads. 

To ensure the FasterViT outputs are shape-compatible 
with OneFormer’s decoder, we introduce the following 

adapter layers: 
• adapter_0: Converts Level 0 CBAM-refined 

features from 392 → 192 channels, producing res2 

at 80×80 resolution. 
• projection_1: Projects Level 1 outputs from 784 → 

384 channels, yielding res3. 
• projection_2: Projects Level 2 outputs from 1568 

→ 768 channels, yielding res4. 
• projection_3: Projects Level 3 outputs (also 1568 

channels) to 1536 channels, yielding res5. 
Each projection module includes a 1×1 convolution, 

GroupNorm, and ReLU, like OneFormer’s original 

input_proj stages. These ensure the intermediate feature 
maps from FasterViT can be directly processed by 
OneFormer’s pixel decoder without retraining it or breaking 

compatibility. 

3.2. CBAM Integration 

We augment the encoder with CBAM, a compact 
attention block that applies channel and spatial attention in 
sequence to adaptively refine feature maps. CBAM is 
designed to be modular and lightweight, making it suitable 
for plug-in use in pretrained architectures [8]. In our case, 
we strategically insert CBAM in two parts of the network: 

We apply CBAM after FasterViT’s Level 0 output, 

before feeding into adapter_1. At this early stage, features 
are high resolution and contain detailed spatial information. 
CBAM enhances these by emphasizing informative edges 
and suppressing background noise, which improves 

low-level saliency crucial for segmentation. The output of 
CBAM is projected to 192 channels by adapter_1, forming 
the res2 map. 

We further add CBAMs just after GroupNorm inside 
each input_proj module (input_proj1–3). These modules 
project and normalize features before they are processed by 
the deformable attention encoder [16] in the pixel decoder. 
By refining feature saliency at this stage, we ensure that the 
transformer decoder receives cleaner and more 
discriminative multi-scale features. 

These attention modules help the network learn what 
and where to focus—early CBAM improves local feature 
saliency, while later CBAMs help sharpen higher-level 
semantic activations across the fused feature hierarchy. 

3.3. Design Principles 

We followed three guiding principles in our 
architecture design: 
• Modular: CBAM blocks are added as plug-in attention 

modules at specific stages of the encoder and decoder. 
They require no changes to OneFormer’s pixel decoder, 

transformer decoder, or task-conditioned segmentation 
heads. Similarly, we preserve FasterViT’s native 

architecture by wrapping it in a thin module that outputs 
four intermediate feature maps aligned with OneFormer 
expectation. FasterViT’s stage-based design (Levels 0–3) 
aligns cleanly with OneFormer’s multi-scale feature 
fusion requirements. This enables us to adapt FasterViT 
for segmentation without modifying internal attention or 
convolutional layers. Together, CBAM and FasterViT 
promote a modular architecture where components can 
be swapped or reused independently. 

• Lightweight: Each CBAM consists of only a few small 
convolutional layers and pooling operations. CBAM is 
designed to be “lightweight” with negligible 

computational overhead [5]. Thus, inserting CBAM 
adds only a tiny fraction of extra parameters and FLOPs. 
This satisfies our requirement that the augmented model 
remains efficient and does not dramatically increase 
inference cost. FasterViT also prioritizes efficiency by 
combining early-stage convolutions (Levels 0–1) for 
fast spatial modeling with late-stage hierarchical 
transformers (Levels 2–3) for global context. This 
hybrid approach enables faster forward passes and 
lower memory usage compared to pure transformer 
backbones like Swin-L [11] or ConvNext-L [12], 
especially at high resolutions. 

• Effective: The two-stage placement of CBAM (early 
and late) ensures the network focuses on informative 
features at multiple levels. Prior work demonstrates that 



 

 

adding CBAM to models yields “consistent 

improvements in classification and detection” accuracy 

[5]. By analogy, we expect our segmentation 
performance to benefit since CBAM encourages the 
network to learn what and where to attend. In particular, 
the early CBAM steers the backbone to emphasize 
meaningful low-level patterns, while the decoder-stage 
CBAM refines the multi-scale features that the 
transformer decoder uses. FasterViT’s hybrid structure 

complements this by producing rich, high-resolution 
features suitable for dense prediction. Its use of 
multi-head attention windows, convolutional residuals, 
and layer scaling helps stabilize training and improve 
spatial awareness, especially under low-data or 
low-resolution regimes. 

4. Experiments 

Our architecture extends OneFormer, a universal 
segmentation framework that handles semantic, instance, 
and panoptic segmentation using a shared pipeline. We 
modify the pixel encoder to use FasterViT for efficient 
feature extraction, and we enhance salient representation 
learning through CBAM at both early and late stages. To 
preserve compatibility with OneFormer’s architecture, we 

use lightweight adaptation/projection layers (adapter_0, 
projection_1, projection_2, projection_3) that ensure our 
outputs match the pixel decoder’s expected input shapes/ 

4.1. Dataset 

We evaluate our model on the Cityscapes dataset [3], 
which includes high-resolution (1024×2048) images of 
urban street scenes from 50 cities. It contains 5,000 finely 
annotated images, split into training (2,975), validation 
(500), and test (1,525) sets. Although 30 classes are 
annotated, only 19 semantic classes are used for benchmark 
evaluation (e.g., road, sidewalk, building, person, car, etc.). 
This dataset is standard for evaluating urban scene 
understanding. 

4.2. Training Setup and Evaluation Metrics 

Our model was trained from scratch due to FasterViT’s 

architectural sensitivity to input shape. The key training 
configuration is presented in Table 1. 

For evaluation we use standard mean Intersection over 
Union (mIoU) [4] on the Cityscapes validation set. We also 
report per-class IoUs in Table 2. 

 

TABLE 1. Model configuration 

Configuration Value 

Input Image Size 512 x 1024 

Hidden Dimension 256 

Batch Size 8 

Base Learning Rate 0.0001 

Optimizer AdamW 

LR Schedule Polynomial Decay (power=0.9) 

LR Multipliers Backbone: 0.1×, Others: 1.0× 

Minimum LR 1e-6 

Pretraining None 

 
TABLE 2. Evaluation metrics 

Class IoU 

Road 0.9803 

Sidewalk 0.8460 

Building 0.9210 

Wall 0.5546 

Fence 0.5804 

Pole 0.6339 

Traffic Light 0.7039 

Traffic Sign 0.7845 

Vegetation 0.9238 

Terrain 0.6519 

Sky 0.9411 

Person 0.8297 

Rider 0.6180 

Car 0.9481 

Truck 0.7024 

Bus 0.8860 

Train 0.7564 

Motorcycle 0.6298 

Bicycle 0.7726 

Mean IoU 0.7718 

4.3. Results and Comparison 

We evaluate our model on the Cityscapes dataset [3], 
which includes high-resolution (1024×2048) images of 
urban street scenes from 50 cities. It contains 5,000 finely 
annotated images, split into training (2,975), validation 



 

 

(500), and test (1,525) sets. Although 30 classes are 
annotated, only 19 semantic classes are used for benchmark 
evaluation (e.g., road, sidewalk, building, person, car, etc.). 
Table 3 illustrates comparison with pre-trained models. 

TABLE 3. Evaluation metrics 

Model Params Pretrained Input 
Size 

Hidden 
Dim 

mIoU 
(%) 

Ours 
(FasterViT + 

CBAM) 

386.8 
M 

NA (training 
from scratch) 

512 × 
1024 256 77.18 

OneFormer 
(Swin-L) 219 M ImageNet-22K 

1024 
× 

2048 
1024 83.0 

OneFormer 
(ConvNeXt-L 

[12]) 
220 M ImageNet-22K 

1024 
× 

2048 
1024 83.0 

OneFormer 
(ConvNeXt-XL 

[12]) 
372 M ImageNet-22K 

1024 
× 

2048 
1024 83.6 

4. Conclusion 

In this research, we proposed a modular and efficient 
extension of the OneFormer segmentation framework by 
integrating the FasterViT backbone and lightweight CBAM 
attention modules. Our architecture maintains compatibility 
with OneFormer’s decoder while introducing improvements 

in feature extraction and saliency refinement. The use of 
FasterViT ensures a strong trade-off between speed and 
accuracy, and the strategic placement of CBAM enhances 
attention to relevant spatial and semantic features. 

We trained the model from scratch without pretraining, 
used a smaller hidden dimension (256), and operated on 
reduced input resolution (512×1024). These preliminary 
settings were chosen to balance performance and cost. Even 
under these constrained settings, our model achieved a 
competitive mean IoU of 77.18% on the Cityscapes dataset. 
We believe the performance can be significantly improved 
by adopting larger configurations—such as using a hidden 
dimension of 1024 and full-resolution inputs 
(1024×2048)—and leveraging pretrained weights. These 
enhancements, along with evolutionary algorithm-based 
hyper-parameter optimisation [18-36], will be exploited in 
future work to fully realize the capability of our 
architecture. 

References 

[1] Liang-Chieh Chen, George Papandreou, Iasonas 
Kokkinos, Kevin Murphy, and Alan L. Yuille, 

“DeepLab: Semantic Image Segmentation with Deep 

Convolutional Nets, Atrous Convolution, and Fully 
Connected CRFs,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Vol. 40, No. 4, pp. 
834–848, Apr. 2018. 

[2] Bowen Cheng, Ishan Misra, Alexander G. Schwing, 
Alexander Kirillov, and Rohit Girdhar, 
“Masked-attention Mask Transformer for Universal 
Image Segmentation,” Proceedings of the IEEE 
Conference on CVPR, pp. 1280–1289, Jun. 2022. 

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, 
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, 
Uwe Franke, Stefan Roth, and Bernt Schiele, “The 

Cityscapes Dataset for Semantic Urban Scene 
Understanding,” Proceedings of IEEE Conference on 
CVPR, pp. 3213–3223, Jun. 2016. 

[4] Mark Everingham, SM Eslami, Luc Van Gool, 
Christopher KI Williams, John Winn, and Andrew 
Zisserman, “The Pascal Visual Object Classes 

Challenge: A Retrospective,” International Journal of 
Computer Vision, Vol. 111, pp. 98–136, Jan. 2015. 

[5] Amirhossein Habibian Hatamizadeh, Greg Heinrich, 
Hien Yin, Alexey A. Tao, Jose M. Alvarez, Jan Kautz, 
and Pavlo Molchanov, “FasterViT: Fast Vision 

Transformers with Hierarchical Attention,” arXiv 
preprint, 2023. 

[6] Alexey Dosovitskiy, et al., “An Image is Worth 16×16 

Words: Transformers for Image Recognition at Scale,” 

Proceedings of the International Conference on 
Learning Representations, May 2021. 

[7] Jaskirat Singh Jain, Jingyu Li, Meng Tang Chiu, Ali 
Hassani, Nikita Orlov, and Humphrey Shi, 
“OneFormer: One Transformer to Rule Universal 

Image Segmentation,” Proceedings of the IEEE 
Conference on CVPR, pp. 10552–10561, Jun. 2022. 

[8] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and 
In So Kweon, “CBAM: Convolutional Block Attention 

Module,” Proceedings of the European Conference on 
Computer Vision, pp. 3–19, Sep. 2018. 

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. 
Hinton, “ImageNet Classification with Deep 

Convolutional Neural Networks,” Communications of 
the ACM, Vol. 60, No. 6, pp. 84–90, Jun. 2017. 

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, 
Lubomir Bourdev, Ross Girshick, James Hays, Pietro 
Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence 
Zitnick, “Microsoft COCO: Common Objects in 

Context,” Lecture Notes in Computer Science, Vol. 
8693, pp. 740–755, 2014. 

[11] Ziwei Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, 
Zheng Zhang, Stephen Lin, and Baining Guo, “Swin 



 

 

Transformer: Hierarchical Vision Transformer using 
Shifted Windows,” Proceedings of ICCV, 2021. 

[12] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph 
Feichtenhofer, Trevor Darrell, and Saining Xie, “A 

ConvNet for the 2020s,” Proceedings of the IEEE 
Conference on CVPR, pp. 11966–11976, Jun. 2022. 

[13] Gernot Neuhold, Tobias Ollmann, Samuel Rota Bulò, 
and Peter Kontschieder, “The Mapillary Vistas Dataset 

for Semantic Understanding of Street Scenes,” 

Proceedings of ICCV, pp. 5000–5009, Oct. 2017. 
[14] Shaibal Saha and Lirong Xu, “Vision Transformers on 

the Edge: A Comprehensive Survey of Model 
Compression and Acceleration Strategies,” 

Neurocomputing, Vol. 643, p. 130417, 2025. 
[15] Evan Shelhamer, Jonathan Long, and Trevor Darrell, 

“Fully Convolutional Networks for Semantic 

Segmentation,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, Vol. 39, 2017. 

[16] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang 
Wang, and Jifeng Dai, “Deformable DETR: 

Deformable Transformers for End-to-End Object 
Detection,” Proceedings of ICLR, May 2021. 

[17] Zhou B., Zhao H., Puig X., Fidler S., Barriuso A., 
Torralba A., “Semantic Understanding of Scenes 

through the ADE20K Dataset”, International Journal 
of Computer Vision, Vol. 127, pp. 302–321, 2016. 

[18] Slade, S., Zhang, L., Huang, H., Asadi, H., Lim, C.P., 
Yu, Y., Zhao, D., Lin, H. and Gao, R., 2023. Neural 
inference search for multiloss segmentation models. 
IEEE Transactions on Neural Networks and Learning 
Systems. 

[19] Zhang, L., Slade, S., Lim, C.P., Asadi, H., Nahavandi, 
S., Huang, H. and Ruan, H., 2023. Semantic 
segmentation using Firefly Algorithm-based evolving 
ensemble deep neural networks. Knowledge-Based 
Systems, 277, p.110828. 

[20] L. Zhang and C.P. Lim, Intelligent optic disc 
segmentation using improved particle swarm 
optimization and evolving ensemble models, Applied 
Soft Computing, vol. 92, p. 106328, 2020. 

[21] L. Zhang, W. Srisukkham, S. C. Neoh, C.P. Lim, and 
D. Pandit, Classifier ensemble reduction using a 
modified firefly algorithm: An empirical evaluation, 
Expert Systems with Applications, vol. 93, 2018. 

[22] L. Zhang, C.P. Lim, Y. Yu, and M. Jiang, Sound 
classification using evolving ensemble models and 
particle swarm optimization, Applied soft computing, 
vol. 116, p. 108322, 2022. 

[23] L. Zhang, D. Zhao, C.P. Lim, H. Asadi, H. Huang, Y. 
Yu, and R. Gao, Video deepfake classification using 
particle swarm optimization-based evolving ensemble 
models, Knowledge-Based Systems, p.111461, 2024. 

[24] H. Xie, L. Zhang, C.P. Lim, Y. Yu, C. Liu, H. Liu, 
and J. Walters, Improving k-means clustering with 
enhanced firefly algorithms, Applied Soft Computing, 
vol. 84, p. 105763, 2019. 

[25] L. Cunha, L. Zhang, B. Sowan, C.P. Lim, and Y. 
Kong, Video deepfake detection using particle swarm 
optimization improved deep neural networks, Neural 
Computing and Applications, vol. 36, no. 15, 2024. 

[26] L. Zhang, C.P. Lim, and C. Liu, Enhanced bare-bones 
particle swarm optimization based evolving deep 
neural networks, Expert systems with applications, 
2023. 

[27] S. Slade, L. Zhang, Y. Yu, and C.P. Lim, An evolving 
ensemble model of multi-stream convolutional neural 
networks for human action recognition in still images, 
Neural computing and applications, vol. 34, 2022. 

[28] Choi, H., Zhang, L. and Watkins, C., 2025. Dual 
representations: A novel variant of Self-Supervised 
Audio Spectrogram Transformer with multi-layer 
feature fusion and pooling combinations for sound 
classification. Neurocomputing, 623, p.129415. 

[29] L. Zhang, C.P. Lim, and Y. Yu, Intelligent human 
action recognition using an ensemble model of 
evolving deep networks with swarm-based 
optimization, Knowledge-based systems, 2021. 

[30] Slade, S., Zhang, L., Asadi, H., Lim, C.P., Yu, Y., 
Zhao, D., Panesar, A., Wu, P.F. and Gao, R., 2025. 
Cluster search optimisation of deep neural networks 
for audio emotion classification. Knowledge-Based 
Systems, 314, p.113223. 

[31] D. Pandit, L. Zhang, S. Chattopadhyay, C.P. Lim, and 
C. Liu, A scattering and repulsive swarm intelligence 
algorithm for solving global optimization problems, 
Knowledge-Based Systems, vol. 156, 2018. 

[32] Chen, W., Zhang, L. and Jiang, M., 2022. Failure 
Mode Identification of Elastomer for Well Completion 
Systems using Mask R-CNN. In IJCNN (pp. 1-8). 

[33] B. Fielding and L. Zhang, Evolving image 
classification architectures with enhanced particle 
swarm optimisation, IEEE access, vol. 6, 2018. 

[34] H. Xie, L. Zhang, and C. P. Lim, Evolving cnn-lstm 
models for time series prediction using enhanced grey 
wolf optimizer, IEEE access, vol. 8, 2020. 

[35] Arno, J., Grace, O., Larridon, I. and Zhang, L., Plant 
Species Classification Using Evolving Ensemble and 
Siamese Networks. In IEEE SMC. 2024. 

[36] T. Lawrence, L. Zhang, K. Rogage, and C. P. Lim, 
Evolving deep architecture generation with residual 
connections for image classification using particle 
swarm optimization, sensors, p.7936, 2021. 

 
 


	1. Introduction
	1.1. Research Motivations

	2. Related Work
	2.1. Vision Transformer and Oneformer
	2.2. Efficient Backbones: FasterViT
	2.3. Attention Modules: CBAM

	3. The Proposed Architecture
	3.1. Overall Architecture
	3.2. CBAM Integration
	3.3. Design Principles

	4. Experiments
	4.1. Dataset
	4.2. Training Setup and Evaluation Metrics
	4.3. Results and Comparison

	4. Conclusion

