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Abstract:

Traffic flow forecasting is essential for Intelligent Transporta-
tion Systems (ITS) and is vital for managing and developing
urban traffic. Traditional methods like historical averages and
time-series analysis have limited accuracy due to their failure to
address the non-linear and dynamic nature of traffic. Although
recent advancements in machine learning and deep learning,
including techniques like KNN, SVM, CNN, and LSTM, have
improved prediction capabilities, challenges in incorporating
external factors such as weather conditions and Points of In-
terest (POI) persist.

This paper introduces a novel Multi-scale Equidistant
Spatio-temporal Graph Convolution Network (MESIGCN)
that traffic
By integrating external factors with traffic data as dis-

significantly enhances forecasting accuracy.
tinct feature channels, this model leverages deep learning
to merge these channels and model spatio-temporal de-
pendencies effectively.  Experimental results demonstrate
that MESIGCN surpasses in both

prediction accuracy and robustness, providing a more ef-

traditional models
fective solution for real-world traffic forecasting challenges.
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1. Introduction

Traffic flow prediction, a critical component of Intelli-
gent Transport Systems (ITS)[1], plays an essential role
in urban transportation management by helping to al-
leviate congestion and optimize resource allocation and
traffic state prediction[2]. It leverages historical data to
enhance the controllability and stability of urban traffic,
improving efficiency[3]. By anticipating potential traffic
scenarios such as congestion, road owners can implement
effective resource management strategies in advance, thus
improving the utilization of traffic resources, reducing de-

lays, minimizing accidents, and enhancing the efficiency of
traffic management[4].

Traditional traffic flow prediction methods primarily
rely on statistical analysis of historical traffic data or em-
ploy neural networks and deep learning to learn features
from traffic data [5]. However, future traffic conditions are
influenced not only by historical data but also by exter-
nal factors like weather and Points of Interest (POIs) [6].
For instance, traffic conditions vary with weather changes,
and traffic in busy commercial areas is more complex than
in quieter ones [7].

To address these challenges, we propose a Multi-scale
Equidistant Spatio-temporal Graph Convolutional Net-
work (MESIGCN) that incorporates external factors for
traffic flow prediction. This model uses graph convolu-
tion and multiscale isometric convolution to effectively
capture spatio-temporal dependencies in traffic features.
By integrating external factors such as weather and POls,
MESIGCN enhances its understanding of the factors influ-
encing traffic systems. Compared to traditional models,
MESIGCN can model essential factors more broadly and
maintain high prediction accuracy under various condi-
tions, significantly improving the accuracy and robustness
of traffic flow predictions.

2. Model and method

e Model Structure.The main structure of the MESIGCN
model is shown in Figure 1. It integrates all processed
features with external factors and consists of two main
components: the spatio-temporal feature extraction mod-
ule and the Multi-scale Isometric Spatio-temporal Map
Convolutional Network (MISTMC).

In the spatio-temporal feature extraction module, three
parallel components are designed to extract spatio-
temporal features, weather features, and POI features, re-



FIGURE 1. The structure of the MESIGCN model, which in-
corporates external factors of traffic flow (e.g., weather features
and POI features). By integrating multi-scale isometric spatio-
temporal convolutions and graph neural networks, it effectively
captures spatial and temporal dependencies for traffic predic-
tion.

spectively. The MISTMC module captures complex rela-
tionships between spatio-temporal features by performing
transformations such as decomposition, downsampling,
and isometric convolution on the time series data through
multi-scale and isometric convolution operations. This
enhances the correlation understanding and improves the
model’s generalization ability.

2.1. Spatio-temporal Feature Extraction Module

The spatio-temporal feature extraction module pro-

cesses multi-dimensional features affecting traffic flow and
consists of three components: the Weather Feature Ex-
tractor (WFE), the Spatio Temporal GCN (STG), and
the POI Feature Extractor. The outputs of these compo-
nents are concatenated and passed to subsequent layers,
effectively combining spatial, temporal, and external fac-
tors to enhance the model’s predictive performance and
robustness.
e Weather Feature Extractor.The WFE module employs
a two-layer Depthwise Separable Convolution (DSC) to
extract temporal and feature-dimension information from
weather data:
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Here, n is the sample index, ¢ the channel index, and [
the timestep index. Each input channel is convolved in-
dependently to extract temporal features, which are then
linearly combined across channels. After two DSCs with

Batch Normalization (BN) and ReLU activation, internal
covariate shifts are reduced to accelerate convergence and
prevent overfitting:

Y, = ReLU(BN(DSC(X)))
Y, = ReLU(BN(DSC(Y1)))

(2)
3)
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Adaptive mean pooling adjusts the output to a fixed size,
facilitating fusion with other features.

e Spatio Temporal GCN.The STG module extracts
spatio-temporal features from the fused data X €
RBXTXNXFin = which includes traffic data and the road
network (A). Temporal information enriches feature rep-
resentations and supports multi-task learning. For each
timestep ¢, the data is processed with GCN, followed by
Batch Normalization and ReLLU activation:

Zt = O'(AXtW) (5)
H; = ReLU(BatchNorm(Z;)) (6)

This operation forms an STGCINBlock, which is itera-
tively applied:

H, ., = STGCINBlock(H;, A) (7)

The final output is:

STG = [HEL)7 HgL), o ,HEFL)] € REBXTXNxX Fout (8)

The STG module effectively captures spatial structures
and temporal dynamics, enhancing performance in com-
plex traffic scenarios. Its flexibility allows adjustment of
the number of modules based on data complexity.

e POI Feature Extractor.The POI dataset comprises 9
types of POIs. For each road section, the predominant
POI type represents the feature vector x; € R¥ for time
step t. The input sequence is:

T c RTXF

Xpor = [X1,X2, ..., X7] 9)

A bidirectional LSTM captures temporal dynamics:

<~ —
h = BiLSTM(Xpor) = [h; h] € R?H (10)

The hidden state is mapped to the target feature dimen-
sion: -
POl = o(Wh + b) € R’ (11)

This approach captures POI feature correlations and
trends, providing rich and precise representations inte-
grated with traffic and weather data.



2.2.  Multi-scale Isometric Spatio-temporal Map Con-
volutional Networks

Outputs from WFE, STG, and POI are aligned in the
time dimension and concatenated to form the multimodal
feature sequence Fiyput € RNXTx(3D) - The sequence un-
dergoes average pooling ¢S to capture long-term trends
and a residual link (R) to capture short-term volatility:

S = AvgPoullD(Fi,pu, k) (12)
R == Finput - S (13)
C®) = ReLU(Conv1D(ky)) (14)

Temporal dependencies are captured through multi-scale
convolution followed by isometric convolution:
I¢*) = ReLU(ConviD(k(*))) (15)

Features are upsampled to original temporal length and
fused:

u® = ReLU(CoanransposelD(I(S), ks)) (16)
ot = Aggregate({U®} ) (17)
foutput = La‘yerNorm(fmulti + FFN(fmulti)) (18)

MISTMC integrates multimodal data (weather, POI, traf-
fic speed) and enhances prediction performance through
feature fusion and multi-scale temporal capturing. Resid-
ual connections and normalization improve model stability
and prevent overfitting.

3. Experiments

3.1. Dataset

e traffic data.In this experiment, the primary source of
traffic data is the SZ_ taxi dataset, along with its neigh-
borhood matrix. The SZ taxi dataset consists of taxi
travel trajectory data collected every inute by sensors dur-
ing January 2015, covering 156 major road segments in
Luohu District, Shenzhen.

e external factors.In this experiment, the dataset of
external factors mainly uses SZ_Weather and SZ_POI.
SZ_ Weather records five types of weather conditions in
Shenzhen in January 2015 at 15-minute intervals, con-
structing a 156*2976 matrix aligned with the traffic data.

The SZ_POI dataset provides point-of-interest (POI) in-
formation for selected road sections, divided into 9 cat-
egories such as restaurants, living services, and medical
services. To integrate external POI factors with the traf-
fic data seamlessly, we extract the POI types that domi-
nate in specific sections and construct them into a 156*1
matrix, simplifying data dimensions and emphasizing key
information.

3.2. Experimental Setup

We conducted our experiments on a physical device
equipped with a Core i7 8700 CPU, 2070ti GPU with 8GB
of memory, and 64GB of RAM. The learning rate was set
to 0.001, the batch size was 64, and the training set uti-
lized 80

To evaluate model performance, we employed five met-
rics: mean absolute error (MAE), root mean square er-
ror (RMSE), Accuracy, Coefficient of Determination (R?),
and Explained Variation Score (VAR). MAE and RMSE
measure the difference between actual and predicted val-
ues, with smaller values indicating better model perfor-
mance. Accuracy measures prediction correctness, where
a higher value signifies better performance. R? represents
the proportion of variance explained by the model, with
values ranging from negative infinity to 1; a value closer
to 1 implies a better fit, while negative values indicate
poorer performance compared to a simple average. VAR
measures how well the model explains the overall variance
in the data, also ranging from negative infinity to 1, with
values closer to 1 indicating better performance.
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In the formula for the above indicators, 4 represents the
average of the true values, y represents the true value, §



represents the predicted vColor legendalue, Y represents
the matrix of true values, Y represents the matrix of pre-
dicted values, and var represents the variance.

3.3. Baseline

We compared the MESIGCN model against six baseline
methods for traffic flow prediction:

SVRI8]: Utilizes Incremental Support Vector Regression
for real-time updating and excels in short-term traffic flow
prediction.

ARIMAJ9]: Autoregressive Integrated Moving Average
Model. It integrates three main time - series modeling
techniques: Autoregressive (AR), Differencing (I), and
Moving Average (MA).

GCN[10]: Enhances Graph WaveNet by introducing
learning rate decay, increasing filter numbers, and adding
jump connections along with short-term pre-training
strategies, significantly improving traffic prediction per-
formance.

DCRNN[11]: Combines graph diffusion convolution
with Gated Recurrent Units (GRU) to effectively capture
spatiotemporal dependencies in traffic data, demonstrat-
ing substantial improvements over other models across
various forecasting horizons.

TGCNJ[12]: Merges the benefits of Graph Convolutional
Networks (GCN) and Temporal Recurrent Neural Net-
works (GRU) to enhance traffic flow prediction accuracy
by considering both temporal and spatial dependencies.

AST-GCNJ[13]:  An Attribute-augmented Spatio-
Temporal Graph Convolutional Network that boosts
prediction accuracy and interpretability by incorporating
dynamic and static external factors of the road network.

3.4. Experimental Results and Analysis

e Comparison and Analysis of Model Metrics. Table 1
compares MESIGCN with six baseline models. MESIGCN
achieves lower MAE and RMSE, higher Accuracy, R?, and
VAR, demonstrating superior performance, greater predic-
tion precision, and enhanced stability.

Specifically, compared to the best baseline model, AST-
GCN, MESIGCN reduces MAE by 1.67%, RMSE by
0.21%, increases Accuracy by 0.07%, and both R? and
VAR by 0.08%.

Thus, MESIGCN outperforms the six classic traffic flow
prediction models across all five metrics, confirming its
superior performance.

FIGURE 2. Comparison of model performance metrics, includ-
ing the performance of MESIGCN and all baseline models across
five metrics.

TABLE 1. Model Performance Metrics: A Comparison of MAE,
RMSE, Accuracy, R?, and Variance

Model

Metrics SVR ARIMA GCN DCRNN  TGCN AST-GCN  MESIGCN
MAE 4.7762 4.6656 4.2265 3.1700 2.7460 2.7035 2.6583
RMSE 7.2203 6.7708 5.6419 4.5000 4.0696 4.0294 4.0211
Accuracy (%) 70.60 38.52 61.19 29.13 71.65 71.93 71.98
R2? 0.8367 0.0111 0.6678 0.8391 0.8388 0.8512 0.8519
Var 0.8375 0.0111 0.6679 0.8391 0.8388 0.8512 0.8519

e Performance Analysis Over Different Horizons. Build-
ing on the model metrics comparison, this section analyzes
MESIGCN against four advanced deep learning models
across additional prediction tasks with varying time steps:
6 (30 minutes), 9 (45 minutes), and 12 (60 minutes). Since
AST-GCN and MESIGCN rank highest for all metrics,
only their performances are compared in Table

For 6 time steps, MESIGCN reduces MAE by 1.48%,
RMSE by 0.20%, and increases Accuracy by 0.10%, R? by
0.06%, and VAR by 0.04% compared to AST-GCN.

At 9 time steps, MESIGCN decreases MAE by 2.42%,
RMSE by 0.68%, and boosts Accuracy by 0.25%, R? by
0.25%, and VAR by 0.27%.

For 12 time steps, MESIGCN lowers MAE by 2.62%,
RMSE by 0.75%, and enhances Accuracy by 0.31%, R? by
0.28%, and VAR by 0.27% relative to AST-GCN. 2. Over-
all, MESIGCN consistently outperforms baseline models
across all time intervals, showing superior stability and
performance in both short-term and long-term predic-
tions, with increasing advantages as the prediction horizon
extends.

e Analysis of Prediction Results. Figures 3 and 4 illus-



TABLE 2. Comparison of Model Performance Across Different
Time Steps

Time Metric DCRNN TGCN AST-GCN MESIGCN
MAE 3.1700 2.7460 2.7035 2.6583
RMSE 4.5000 4.0696 4.0294 4.0211
15min  Accuracy(%)  29.13 7165 71.93 71.98
R2 0.8391 0.8388 0.8512 0.8519
Var 0.8391 0.8388 0.8512 0.8519
MAE 3.2300 2.7470 2.7265 2.6862
RMSE 4.5600 4.0770 4.0529 4.0448
30 min  Accuracy(%) 29.70 71.59 71.76 71.83
R2 0.8332 0.8377 0.8494 0.8499
Var 0.8360 0.8377 0.8495 0.8498
MAE 3.2700 2.7788 2.7611 2.6944
RMSE 4.6000 4.1035 4.0822 4.0544
45 min  Accuracy(%) 0.3021 71.41 71.56 71.74
R2 0.8275 0.8327 0.8473 0.8494
Var 0.8314 0.8357 0.8474 0.8496
MAE 3.3100 2.7911 2.7744 2.7016
RMSE 4.6400 4.1266 4.1001 4.0692
60 min  Accuracy(%) 30.69 71.25 71.43 71.64
R2 0.8219 0.8339 0.8459 0.8483
Var 0.8267 0.8340 0.8460 0.8483

trate traffic data for sections 90217-90221 in the SZ Taxi
dataset from January 1st to 7th, including peak traffic
during the New Year holiday. MESIGCN’s predictions
(red lines) closely match the actual traffic data (blue lines)
both during peak and non-peak periods over the week and
on the specific day of January 3rd.

FIGURE 3. The prediction performance of the MESIGCN
model on weekly traffic data, showing the speed variation trends
of actual and predicted data across multiple sections (e.g., 90217,
90218).

These results demonstrate that MESIGCN effectively
predicts traffic flow trends in both daily and weekly scopes.
Combined with the metrics in Figure 2, Tables 1 and
2, MESIGCN significantly outperforms classical and ad-

FIGURE 4. The prediction performance of the MESIGCN
model on daily traffic data, showing the speed variation trends of
actual and predicted data across multiple sections (e.g., 90217,
90218).

vanced baseline models, showcasing high consistency with
actual traffic data and strong applicability and stability
across various scenarios.

3.5.  Ablation Study

e Model Ablation. To evaluate the effectiveness of the
MESIGCN model, ablation experiments were conducted
on the SZ Taxi dataset. Four model variants were pro-
posed: W/O WFE (removing the weather feature ex-
tractor), W/O POI (removing the POI feature extrac-
tor), W/O POI & WFE (removing both weather and POI
feature extractors), and W/O MISTMC (removing the
MISTMC module). The complete model (Base) was com-
pared with these variants in Table 3. The results show that
W/0 WFE, W/0O POI, and W/O POI & WFE all perform
worse than the full model across various metrics, indicat-
ing that WFE and POI significantly impact MESIGCN’s
structure. Specifically, W/O POI & WFE exhibits a
substantial performance drop compared to MESIGCN,
demonstrating that these features are crucial for traffic
flow prediction. Additionally, W/O MISTMC also shows
performance degradation at different scales, suggesting
that this module significantly contributes to the model’s
performance.

e Dataset Ablation.To assess the impact of external
factors on traffic flow prediction, ablation experiments
were conducted on the dataset. Three variants were pro-
posed: W/O SZ_ Weather (removing weather data), W/O



TABLE 3. Model Ablation Results

Metrics W/O0 WFE W/O0 POI W/O POI&WFE W/O MISTMC  Base
MAE 2.7731 2.7829 2.9194 2.7109 2.6583
RMSE 4.3010 4.2436 4.0344 4.0271 4.0211
Accuracy (%) 71.03 70.89 70.43 71.34 71.98
R? 0.8508 0.8508 0.8350 0.8515 0.8519
Variance 0.8508 0.8508 0.8361 0.8515 0.8519

SZ_POI (removing POI data), and W/O SZ_ POI &
SZ_Weather (removing all external factors). The predic-
tion performance of the model with external factors (Base)
was compared with these variants in Table 4. Removing
either weather or POI data resulted in a slight decrease in
prediction performance compared to the model with ex-
ternal factors. However, removing both data types led to
a significant decline in prediction performance. This indi-
cates that external factors have a considerable impact on
traffic flow prediction, especially when multiple external
variables are considered. Therefore, incorporating the in-
fluence of external factors will be an important direction
for future research in traffic flow prediction.

TABLE 4. Dataset Ablation Results

Metrics W/O SZ_Weather W/O SZ_POI W/O SZ_Weather & SZ_POI  Base

MAE 2.6829 2.6731 2.9194 2.6583
RMSE 4.0348 4.0344 4.2436 4.0211
Accuracy (%) 70.89 71.19 70.43 71.98
R? 0.8508 0.8508 0.8350 0.8519
Variance 0.8512 0.8512 0.8361 0.8519

4. CONCLUSION

This paper introduces the MESIGCN model to ad-
dress traffic flow prediction incorporating external factors.
MESIGCN employs three parallel deep learning modules
to extract features from external factors and traffic data,
using graph convolution and multi-scale isotropic convo-
lution to capture spatiotemporal dependencies effectively.
Extensive experiments demonstrate MESIGCN’s adapt-
ability and robustness in processing multi-feature tasks
and its superior performance in traffic flow prediction
with external factors. Thanks to its parallel structure,
MESIGCN can integrate richer feature representations,
showing significant scalability for future applications.

Future research in traffic flow prediction should empha-
size the influence of external factors on prediction accu-
racy, with a focus on how to integrate and process these
external features with traffic data.
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