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Abstract:
Sparse signal recovery is a crucial topic in signal process-

ing. While ℓ1 regularization methods are widely used, they
face significant computational challenges when dealing with high-
dimensional nonsmooth functions. To address this issue, this pa-
per proposes a Quaternion Basis Pursuit (QBP) method, which
achieves sparse decomposition by minimizing the ℓ1 norm of
quaternion signals. We propose an efficient optimization strat-
egy based on Iteratively Reweighted Least Squares (IRLS) and
validate its effectiveness through extensive experiments on quater-
nion signal recovery tasks. The experimental results demonstrate
that QBP achieves better performance for quaternion signal re-
construction while significantly reducing the recovery errors. It
provides a novel way for sparse optimization in the quaternion
domain, offering broad application potential.
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1 Introduction

Sparse signal recovery has garnered significant attention in
recent years since its wide applications in signal processing,
image reconstruction, compressed sensing, and machine learn-
ing. The task of sparse signal recovery is to recover the original
sparse signal from the known measurement matrix and observa-
tion vector [1]. To obtain a sparse signal x, the l0 minimization
constraint is usually used to solve a problem as:

min
x∈Rn
∥x∥0 s.t. y = Ax, (1)

which is NP-hard in general [2]. The computational complexity
will increase rapidly with the increase of sparse vector dimen-
sion. For computational efficiency, it is common to replace ℓ0
minimization with its convex relaxation as:

min
x∈Rn
∥x∥1 s.t. y = Ax. (2)

Here, A ∈ Rm×n, y ∈ Rm are given. It is commonly referred to
as ℓ1 norm minimization [3] or basis pursuit [4] in the literature.

Basis pursuit (BP) transforms the non-convex ℓ0 norm op-
timization into a convex problem, facilitating global optimal
approximation. Theory guarantees have been established for
BP, particularly under the Restricted Isometry Property (RIP),
which ensures the solution obtained from the convex relax-
ation remains equivalent to the original ℓ0 minimization prob-
lem [5]. However, despite these theoretical guarantees, BP may
still exhibit limitations in practical scenarios, such as subopti-
mal recovery in highly sparse settings. To address this issue,
researchers have proposed various improved methods. Among
them, the Iterative Reweighted Least Squares (IRLS) algorithm
is an important enhancement technique. By introducing adap-
tive weights and solving iteratively, IRLS aims to better ap-
proximate the ℓ0 norm and improve the accuracy and recovery
performance of sparse solutions.

The IRLS method is a widely used numerical optimization
technique, specially in sparse signal recovery and compressed
sensing [6]. By dynamically updating weights at each iteration,
IRLS transforms the original non-convex optimization problem
into a series of weighted least squares problems, making it eas-
ier to solve. In particular, IRLS has been extensively applied
in sparse signal recovery and compressed sensing , where it
is used to minimize the ℓp (0 < p < 1) norm [7] and achieve
sparser solutions than ℓ1 methods [6]. Moreover, IRLS is useful
in robust regression, where it assigns different weights to resid-
uals to effectively reduce the influence of outliers [2]. Previous
BP studies have shown that under certain conditions, IRLS en-
joys a linear convergence rate and efficiently approximates the
optimal solution [8].

The outlines of the paper is organized as follows. Introduce
basic knowledge on quaternion and basis pursuit in Section 2.
In section 3, we have described model and its optimization pro-
cess. Section 4 presents the experimental results. Finally, con-
clude the paper in section 5.



2 Related Works

Now, we introduce the basics related to quaternion and BP.

2.1 Quaternion

A quaternion q̇ ∈ H is a type of hyper-complex number
that consists of a real scalar part and three imaginary com-
ponents [9]. It is represented as q̇ = q0 + q1i + q2j + q3k,
where q0, q1, q2, q3 ∈ R. i, j, k are imaginary units that sat-
isfy the multiplication rules: i2 = j2 = k2 = ijk = −1. This
property leads to the non-commutative nature of quaternion
multiplication, meaning that for any two quaternions ṗ and q̇,
ṗq̇ , q̇ ṗ. The conjugate transport of a quaternion q̇ is defined
as ¯̇q = q0 − q1i − q2j − q3k. The modulus of a quaternion q̇ is
given by |q̇| =

√
¯̇qq̇. A quaternion vector q̇ can be expressed in

the form q̇ = q0+q1i+q2j+q3k, where each component ql ∈ R
n

for l = 0, 1, 2, 3. For a quaternion vector q̇ = [q̇1, q̇2, . . . , q̇n]T ,
its conjugate transpose is defined as q̇H = [ ¯̇q1, ¯̇q2, . . . , ¯̇qn]. The
ℓ1 norm of q̇ is given by ∥q̇∥1 =

∑
i |q̇i|. For two quaternion vec-

tors ṗ and q̇, their inner product is expressed as ⟨ṗ, q̇⟩ = ṗHq̇. A
quaternion matrix Q̇ = [q̇1, q̇2, · · · , q̇n] ∈ Hm×n. The conjugate
transport of Q̇ is given by Q̇H = [q̇H

1 , q̇
H
2 , · · · , q̇

H
n ].

2.2 Basis Pursuit

Basis Pursuit (BP) is an optimization method used for sparse
signal representation. It employs convex optimization to find
the sparsest signal representation in an overcomplete dictionary
[4]. The fundamental idea is to solve a convex ℓ1 minimization
problem, which promotes sparsity while ensuring a unique and
stable solution. Building on ℓ1 norm minimization, several vari-
ants have been proposed to enhance its performance in different
scenarios. For instance, the L1-L2 [10] minimization method
introduces an additional regularization term to balance sparsity
and stability, enabling the accurate recovery of sparse vectors.
The L1/L2 model [11], known for its scale-invariance property,
improves adaptability. For multi-channel and noisy environ-
ments, QSR [12] provides a more robust solution, QEN [13] is
particularly effective in handling signals with high inter-group
correlation. Depending on prior knowledge about the signal,
researchers have developed extensions of BP, such as block BP
methods [14] for structured sparsity and robust BP [15] tech-
niques for handling noise and outliers. Despite these advance-
ments, BP has seen limited application in multi-channel set-
tings, showing a research gap that needs more study.

3 Quaternion Basis Pursuit

Although the Basis Pursuit (BP) method is effective, in prac-
tical applications, such as color image processing, the data is
often multi-channel. Traditional BP can only process each
channel separately and then combine them, which results in the
loss of inter-channel information. Therefore, there is a need
to extend BP to multi-channel data. Previous literature has
shown that quaternion-based methods offer advantages in han-
dling such multi-channel data [16]. To address the above issue,
a quaternion basis pursuit (QBP) model is proposed as follows

min
ẋ∈Hn
∥ẋ∥1 s.t. ẏ = Ȧẋ, (3)

where ∥ẋ∥1 denotes the quaternion ℓ1 norm, Ȧ is measure-
ment matrix and ẏ∗ is observation vector. Considering ∥ẋ∥1
is non-smooth and non-convex, we extend the Majorization-
Minimization (MM) algorithm [17] from the real domain to the
quaternion domain. Following the ideas in the literature [18], a
functionJϵ(ẋ) is introduced, which serves as a smooth approx-
imation of ℓ1 norm. For a fixed smoothing parameter ϵ > 0, it
is defined as Jϵ(ẋ) :=

∑n
i=1 Jϵ(ẋi) with

Jϵ(ẋi) :=


|ẋi|, |ẋi| > ϵ,

1
2

 ẋ2
i

ϵ
+ ϵ

 , |ẋi| < ϵ,
(4)

where ẋ = [ẋ1, ẋ2 · · · , ẋn]T . Since the modulus of each compo-
nent of ẋ is smooth in the real domain, it remains smooth in the
quaternion domain. However, the function is still non-convex.
Due to its non-convexity, we approximate it using a suitable
quadratic function Qϵ(·, ẋ) defined by

Qϵ(ż, ẋ) :=Jϵ(ẋ) + ⟨∇Jϵ(ẋ), ż − ẋ⟩ +
1
2
⟨(ż − ẋ) ,W(ż − ẋ)⟩

=Jϵ(ẋ) +
1
2
⟨ż,Wż⟩ −

1
2
⟨ẋ,Wẋ⟩,

(5)
where diag(wϵ(ẋ)) is denoted as W. The gradient of Jϵ at ẋ,
∇Jϵ(ẋ), is defined by

∇Jϵ(ẋi) =
ẋi/|ẋi|, |ẋi| > ϵ,

ẋi/ϵ, |ẋi| ≤ ϵ,
(6)

and wϵ(ẋ) ∈ Rn is a weight vector.
The function Qϵ(·, ·) has the following properties:
(i) diag (wϵ(ẋ)) ẋ = ∇Jϵ (ẋ).
(ii) Qϵ(ż, ẋ) ≥ Jϵ(ż), the equation holds if and only if ż = ẋ.
Using these properties, we can update ẋ.



During the update process of ẋ, it aims to minimize Qϵ (·, ẋ),
which requires to find ż that minimizes

〈
ż, diag(wϵ(ẋ)ż

〉
. The

weighted structure imposed by wϵ(ẋ) plays a crucial role in re-
fining the solution, guiding ż towards a sparser representation.
Consequently, the update rule for ẋ can be written as

ẋ(k+1) = Qinv

(
P

(
W(k)−1ȦH

) (
P

(
ȦW(k)−1ȦH

))−1
Q(ẏ)

)
. (7)

Here, for a matrix Ṁ = M0 +M1i +M2j +M3k ∈ Hm×n, the
operator P [12] is defined as

P(Ṁ) :=


M0 −M1 −M2 −M3
M1 M0 −M3 M2
M2 M3 M0 −M1
M3 −M2 M1 M0

 .
For a vector v̇ = v0 + v1i + v2j + v3k ∈ Hn, the operator Q [12]
transforms v̇ into a vector in R4n, i.e., Q(v̇) := [vT

0 vT
1 vT

2 vT
3 ]T,

and Qinv is its inverse transformation. P and Q has the follow-
ing proposition: Q(Ṁv̇) = P(Ṁ)Q(v̇), ∀ Ṁ ∈ Hm×n, ∀ v̇ ∈ Hn;

With the fixed ẋ, the followings perform updates for ϵ and
W. There are two methods for updating the smoothing param-
eter ϵ [19]: one uses a fixed value, and the other updates ϵ
dynamically. In our approach, a dynamic update rule for ϵ is
used , where ϵ follows a non-increasing sequence. This dy-
namic update strategy allows ϵ to gradually decrease, leading
to a better approximation of the original ℓ1 norm while main-
taining numerical stability in the early iterations. Specifically,
the updating rule is given by

ϵ(k+1) := min
{
ϵk,
σs(ẋ(k+1))ℓ1

n

}
, (8)

where σs(ẋ)ℓ1 = inf
{
∥ẋ − ż∥1 : ż ∈ Hn and ż is s-sparse

}
.

For each component ẋi, the weight wi depends on its module.
When |ẋi| > ϵ, wi is set to 1/|ẋi|; when |ẋi| ≤ ϵ, wi is set to 1/ϵ.
The update rule is as follows

W = diag(wϵ(ẋ)) = diag(w1,w2, · · · ,wn),
wi = 1/max {|ẋi|, ϵ} , i = 1, 2, · · · , n

(9)

ensuring that the relationship ∇Jϵ(ẋi) = wi ẋi holds. The proce-
dures are summarized in the Algorithm 1.

After presenting the model update process, we further con-
duct its convergence analysis. In the real domain, the conver-
gence conditions are established under the NSP assumption [5].
Similarly, this analysis can be extended to the quaternion do-
main. Before discussing the property, we first introduce the
notations used. [n] denotes the set of integers from 1 to n. s

Algorithm 1 QBP via IRLS
Input: Ȧ ∈ Hm×n, ẏ ∈ Hm.
Initialization: w0 = 1 ∈ Rn, ϵ = ∞, maxIter= 50.

1: while k < maxIter do
2: Update ẋ(k+1) by Eq. (7).
3: Update ϵ(k+1) by Eq. (8).
4: Update W(k+1) by Eq. (9).
5: k = k + 1.
6: end while

Output: ˆ̇x ∈ Hn.

is sparsity and S is support set, which refers to the index set
corresponding to the non-zero elements. Λ is a subset of S and
Λ ∩ Λc = [n]. |Λ| represents the number of elements in the set
Λ. Denote ker(Ȧ) as ker(Ȧ) =

{
v̇ | Ȧv̇ = 0̇

}
.

Definition 1. Quaternion Null Space Property (QNSP). A ma-
trix Ȧ ∈ Hm×n is said to satisfy the QNSP of order s ∈ N with
constant 0 < ρs < 1 if for any set Λ of cardinality |Λ| ≤ s, it
holds that ∥v̇Λ∥1 ≤ ρs∥v̇Λc∥1, for all v̇ ∈ ker(Ȧ).

Lemma 1. Let ẋ∗ = [ẋ∗1, ẋ
∗
2, · · · , ẋ

∗
n]T ∈ Hn be an s-sparse

vector and set ẏ = Ȧẋ∗. If 0 < ρŝ < 1 − 2
ŝ+2 and ŝ > s + 2ρŝ

1−ρŝ
,

then there exist a constant k∗ ∈ N+, ζ ∈ R+ such that

ζ :=
∥ẋ(k∗) − ẋ∥1

min
{
|ẋ∗i |

∣∣∣i ∈ S
} < 1, (10)

then ∀k > k∗, the iterations of QBP satisfies

∥ẋ(k+1) − ẋ∗∥1 ≤
ρŝ(1 + ρŝ)

1 − ζ

(
1 +

1
ŝ − 1 − s

)
∥ẋ(k) − ẋ∗∥1. (11)

Remark 1. The convergence depends on the condition ζ :=
∥ẋ(k∗ )−ẋ∗∥1

min
{
|ẋ∗i |

∣∣∣i∈S } < 1. The error at each iteration satisfies ∥ẋ(k+1) −

ẋ∗∥1 ≤ µ∥ẋ(k) − ẋ∗∥1, where µ < 1.

This property demonstrates the convergence between the
previous and the subsequent iterations. Similarly, this result
has already been proven in the real domain [8], and the proof
can be extended to the quaternion domain. Due to space limi-
tations, readers can refer to the proof in the real domain. The
result in the real domain is a special case of ours when the co-
efficients of the imaginary parts are zero.

4 Experiments

In this section, we first evaluate the performance of the QBP
algorithm in signal recovery experiments. And then present a
visualization of the convergence process to support Lemma 1.
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FIGURE 1. Recovery results of signal recovery. The blue lines are the ground-truth, and the red lines represent recovered results of L1-L2 (RelErr =
1.0050e-04), L1/L2 (RelErr = 0.2161), QSR (RelErr = 0.2597), QEN (RelErr = 0.1604) and QBP (RelErr = 4.8460e-08). From left to right are the scalar
and three imagery parts for each quaternion signal.

4.1 Signal recovery

We now evaluate the performance of quaternion basis pursuit
by applying it to signal recovery.

Setting: Signal recovery problem is to recover the signal ˆ̇x
from ẏ = Ȧẋ. Ȧ ∈ Hm×n is measurement matrix followed by
N(0, 1/m) with m = ⌊2s log (n/s)⌋, which is known to satisfy
the QNSP of order s with high probability [20]. Randomly
generate a ground-truth ẋ∗ ∈ H800 with sparsity s = 20. ẋ∗
satisfies

∑
i j

ẋ2
i j
= 1 with i j ∈ S ⊂ [n], j = 1, 2, · · · , s.

Comparison methods: The competing methods are quater-
nion related QSR (λ = 0.1) [21], QEN (λ1 = 0.1, λ2 = 0.01)
[13] as well as the real-valued methods L1-L2 [10] and L1/L2
[11]. All the above methods are variations of the ℓ1 norm.
For evaluation, the relative error (RelErr) is employ ed as
∥ ˆ̇x − ẋ∗∥2/∥ẋ∗∥2.

Results: When s = 20, as shown in the Fig. 1, the blue lines
represent the ground-truth signals, while the red lines represent
the recovered signals obtained by different methods, with the
relative error (RelErr) used to quantify the recovery accuracy.
QBP achieves the lowest recovery error across all components,

L1-L2 L1/L2 QSR QEN QBP
10-8

10-4

10-1

100

FIGURE 2. The relative errors and variances of signal recovery for dif-
ferent methods over 100 random runs.

almost perfectly matching the ground-truth signals, demon-
strating its superiority in quaternion signal recovery. Overall,
QBP significantly outperforms the other approaches in terms
of recovery accuracy, enabling more precise quaternion signal
reconstruction while effectively reducing recovery errors, thus



showcasing greater robustness and recovery capability.
To further eliminate the impact of randomness on the results,

Fig. 2 presents the related error results obtained from 100 ex-
perimental runs for each method. QBP outperforms real-valued
methods because it can fully exploit the correlation between
different channels. QBP outperforms quaternion-based meth-
ods because it employs the IRLS update strategy, which en-
hances the accuracy of estimation.

4.2 Convergence phase

This experiment aims to investigate the convergence phase
of the optimization algorithm. Using a simple example, it an-
alyzes how the algorithm exhibits convergence behavior and
evaluates its stability across different experimental settings.

Setting: We generate ẋ∗ ∈ H800 with sparsity s = 20, other
settings are the same as above.

Results: In Fig. 3, the decay of the ℓ1 error ∥ẋ(k) − ẋ∗∥1
for the iterates ẋ(k) produced by Algorithm 1 is analyzed by
observing the values of ζ(k) := ∥ẋ(k)−ẋ∗∥1

min
{
|ẋ∗i |

∣∣∣i∈S } , represented in red,

and the factor µ(k)
1 =

∥ẋ(k)−ẋ∗∥1
∥ẋ(k−1)−ẋ∗∥1

, depicted in blue. Observe that
the convergence condition (Eq. (10)) is satisfied after k = 19
iterations, as shown by the red dashed line in the Fig. 3.
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FIGURE 3. Instantaneous linear convergence rates of IRLS for ℓ1
minimization: Linear convergence factors µ(k)

1 (in blue), filled circles if
S (k) = S . Error parameter ζ(k) (in red). Horizontal (red) line: Threshold ζ
= 1. Vertical (red) line: k∗ = 19, the smallest k such that ζ(k) < 1.

We generate ẋ∗ ∈ H1600 with sparsity s = 40, other settings
remain the same. In the Fig. 4, add the linear convergence
factor µ(k) =

Jϵ(k) (ẋ(k))−∥ẋ∗∥1
Jϵ(k−1) (ẋ(k−1))−∥ẋ∗∥1

that tracks the linear convergence
behavior of the smoothed ℓ1 norm objective J defined in (4).
In addition to the observations in Fig. 4, it is noticed that µ(k)
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FIGURE 4. Instantaneous linear convergence rates for ℓ1 minimization:
Linear convergence factors µ(k)

1 (in blue) and µ(k) (in green), filled circles
if S (k) = S . Error parameter ζ(k) (in red). Horizontal (red) line: Threshold
ζ = 1. Vertical (red) line: k∗ = 18, the smallest k such that ζ(k) < 1.

and µ(k)
1 exhibit a very similar behavior. This further validates

the effectiveness of the smoothing approach in preserving the
expected convergence properties.

5 Conclusion

This paper extends the Basis Pursuit algorithm to the quater-
nion domain and proposes a Quaternion Basis Pursuit (QBP)
algorithm to address the sparse optimization needs of high-
dimensional data. To solve the sparse optimization problem
in the quaternion domain, we adopt the Iteratively Reweighted
Least Squares (IRLS) method. This ensures that the algorithm
can start from any initial point and achieve linear convergence
to the optimal solution, thereby avoiding the local minima is-
sues encountered by traditional methods. Furthermore, we de-
signed and performed a series of numerical experiments, and
the results confirm the effectiveness of the proposed algorithm.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China under Grant Nos. 62276111,
62076041 and 61806027. This work was supported by Re-
search Grants of Huazhong Agricultural University of Grant
No. 2662024XXPY005.



References

[1] E. J. Candes and T. Tao, “Near-optimal signal re-
covery from random projections: Universal encoding
strategies?,” IEEE Transactions on Information Theory,
vol. 52, no. 12, pp. 5406–5425, 2006.

[2] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy
approximations,” Constructive approximation, vol. 13,
pp. 57–98, 1997.

[3] D. L. Donoho and B. F. Logan, “Signal recovery and
the large sieve,” SIAM Journal on Applied Mathematics,
vol. 52, no. 2, pp. 577–591, 1992.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM review, vol. 43,
no. 1, pp. 129–159, 2001.

[5] E. Candes and T. Tao, “Decoding by linear pro-
gramming,” IEEE Transactions on Information Theory,
vol. 51, no. 12, pp. 4203–4215, 2005.

[6] R. Chartrand and W. Yin, “Iteratively reweighted algo-
rithms for compressive sensing,” in 2008 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 3869–3872, 2008.
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