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Abstract:
Quaternion Orthogonal Matching Pursuit (QOMP) pioneers

the application of quaternions in color image processing, gar-
nering widespread attention for its superior performance. How-
ever, it selects only one atom that is more correlated with the
residual at each iteration, leading to a higher number of iter-
ations. In particular, the atoms selected separately by QOMP
at each step may not always come from the same subspace,
which can potentially reduce the algorithm’s accuracy. This
paper proposes a Quaternion Generalized Orthogonal Match-
ing Pursuit (QGOMP) model that can select multiple atoms
each time. Specifically, it optimizes the atoms selection strat-
egy by leveraging the correlation between atoms within the
same subspace, which significantly reduces the number of iter-
ations while enhancing the accuracy of sparse signal recovery.
The experimental results reveal the competence of QGOMP in
various color image recognition and clustering using standard
datasets.
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1 Introduction

Orthogonal Matching Pursuit (OMP) [1] is a widely
used greedy algorithm for sparse representation. It it-
eratively selects the most correlated atoms to the resid-
ual and updates the residual via orthogonal projection,
which efficiently constructs a sparse representation to re-
cover the signals with single channel. However, for multi-
channel signals (such as color images and hyperspectral
data), OMP can only process each channel separately,
which fails to employ the correlation information between
different channels.

In recent years, the widespread applications of multi-
channel signals have spurred significant research interest.
For example, tensor or quaternion representation meth-

ods have rapidly developed to address this limitation. In
particular, quaternion can integrate red, green, blue chan-
nels information for color images into a quaternion struc-
ture, which have shown to be effectively preserved intrinsic
correlations between channels [2]. Xu et al. proposed a
Quaternion Orthogonal Matching Pursuit (QOMP) model
[3] for color image processing. However, it may face the
issue of selecting atoms from different classes in the dictio-
nary during each iteration when the signal has structural
priors. To address this limitation, Dong et al. proposed
a robust Quaternion Block Orthogonal Matching Pursuit
(RQBOMP) [4] algorithm, which fully utilized the block
structure information in the data to improve the perfor-
mance of representing the data.

In fact, numerous studies remain committed to enhanc-
ing the performance of OMP for single-channel sparse sig-
nal recovery by focusing on how to select atoms more
efficiently during iterations. For example, the Regular-
ized Orthogonal Matching Pursuit (ROMP) method [5]
introduced a regularization mechanism to ensure that the
atoms selected in each iteration have a high level of con-
fidence. The Generalized Orthogonal Matching Pursuit
(GOMP) method [6] selected the most relevant multiple
indices in each iteration, reducing the number of itera-
tions. The GOMP method achieved efficient sparse sig-
nal recovery while also exhibiting adaptability to differ-
ent task requirements. Currently, studies on the GOMP
model in the quaternion setting have not been fully ex-
plored.

This paper is outlined as follows. Section 2 briefly in-
troduces the basic facts for quaternion and some related
works. Section 3 proposes a Quaternion Generalized Or-
thogonal Matching Pursuit (QGOMP) model and its al-
gorithm for sparse signal representation, which is applied
to quaternion sparse signal recovery, classification, and
clustering tasks. Section 4 presents the experimental re-
sults for color face recovery, recognition, and clustering.



Section 5 concludes this paper.

2 Related works

This section offers a review of the fundamental concepts
of quaternions and the QOMP algorithm.

2.1 Quaternion

The quaternion q̇ ∈ H, as a hypercomplex number,
was invented by Hamilton [7]. It is constructed lin-
early by one real part and three imaginary parts, i.e.,
q̇ = q0 + q1i + q2j + q3k, with qi ∈ R, (i = 0, 1, 2, 3).
The three imaginary parts obey these multiplication rules
ij = −ji = k, jk = −kj = i, ki = −ik = j, which indicates the
quaternion multiplication is non-commutative. The con-
jugation of q̇ is q̇ = q0 − q1i − q2j − q3k and its modulus is
|q̇| =

√
q̇q̇. A quaternion vector ẋ = (ẋ1, ẋ2, . . . , ẋm)T ∈ Hm

can be expressed as ẋ = x0 + x1i + x2j + x3k, where xi ∈ Rm

(i = 0, 1, 2, 3) are real-valued vectors. The conjugate trans-
pose of ẋ is defined as ẋH =

[
ẋ1, ẋ2, . . . , ẋm

]
, and the left

inner product of two vectors is ⟨ẋ, v̇⟩ := ẋH v̇ . The ℓ0 norm
||ẋ||0 is the count of non-zero quaternions in ẋ. The ℓ2 norm
of ẋ is calculated as ||ẋ||2 =

√
ẋH ẋ =

(∑m
i=1 |ẋi|2

) 1
2 .

2.2 Quaternion orthogonal matching pursuit

Sparse signal recovery aims to reconstruct a S sparse
signal (with S non-zero elements) from limited linear mea-
surements. QOMP is a crucial greedy algorithm for multi-
channel signal processing[8]. Concretely, to obtain a S
sparse vector ẋ ∈ Hn for a test sample ẏ ∈ Hm using a
quaternion dictionary matrix Ḋ =

[
ḋ1, ḋ2, . . . , ḋn

]
∈ Hm×n,

where ḋi are atoms from samples, the QOMP model is the
minimization problem as follows

ẋ∗ = arg min
ẋ∈Hn

∥∥∥ẏ − Ḋẋ
∥∥∥2

2 , s.t. ∥ẋ∥0 ≤ S. (1)

The QOMP selects the most correlated dictionary atom
to the current residual in each iteration until a prede-
fined sparsity threshold ∥ẋ∥0 ≤ S is satisfied, effectively
addressing the NP-hard ℓ0 problem. On the basis of pre-
serving the fundamental performance of QOMP, it is still
possible to further reduce the algorithmic complexity and
accelerate the running time. For example, Wang et al.
propose an improved Generalized Orthogonal Matching

Pursuit (GOMP) algorithm in single-channel sparse sig-
nal recovery [9]. In each iteration, GOMP selects multiple
correlated atoms and adds several correct indices into the
index set. GOMP enhances the efficiency of sparse sig-
nal reconstruction while maintaining high precision, and
it requires significantly fewer iterations than OMP.

3 Method

This section proposes a Generalized Orthogonal Match-
ing Pursuit (QGOMP) model and applies the QGOMP
algorithm to signal recovery, recognition and clustering.

3.1 Quaternion generalized OMP

To further accelerate QOMP, we propose an improved
algorithm that selects multiple most relevant atoms per
iteration for multi-channel signals. Specifically, define
a N-class dictionary Ḋ = [ḊC1 , . . . , ḊCN ] ∈ Hm×n, where
ḊCi (i = 1, 2, · · · ,N) are the sub-matrix of class i and
C1 ∪C2 ∪ · · · ∪CN = C is the index set of all training sam-
ples. ḊΛ is a sub-matrix of Ḋ with columns indexed by set
Λ, where Λ ⊆ C. To improve QOMP by identifying the
most relevant s0 ≥ 1 atoms in one iteration, we propose
a Quaternion Generalized Orthogonal Matching Pursuit
algorithm (QGOMP). When s0 = 1, QGOMP returns to
QOMP. The QGOMP algorithm is detailed as follows.

1) Initialization: we initialize the number of iterations
k = 0, residual ṙ(0) = ẏ and index set Λ(0) = ∅.

2) s0-Identification: In the k-th iteration, QGOMP se-
lects the top s0 (integer s0 ≥ 1) atoms with the largest
projections onto the current residual. Specifically, define
the index set I(k) = {I(k)

1 , . . . , I
(k)
s0 }, where

I(k)
i = argmax

i∈C\
(
Λ(k−1)∪

{
I(k)

s0−1,...,I
(k)
1

}) ∣∣∣∣〈ḋi, ṙ(k−1)
〉∣∣∣∣ , (2)

i.e., obtain indices based on the top s0 correlations be-
tween atoms in the candidate pool Ḋ\ḊΛ(k−1) and the cur-
rent residual, where Ḋ\ḊΛ(k−1) is a sub-matrix of Ḋ exclud-
ing the columns indexed by Λ(k−1). Subsequently, we up-
date the most relevant index set Λ(k) = Λ(k−1) ∪ I(k).

3) Representation: Then update the representation sub-
vector ẋ(k)

Λ(k) whose the atoms supported in Λ(k) by solving

ẋ(k)
Λ(k) = arg min

ẋ
Λ(k)∈H|Λ(k)|

1
2

∥∥∥ẏ − ḊΛ(k) ẋΛ(k)

∥∥∥2
2 , (3)



the elements of ẋ(k) that are not supported by Λ(k)

are zeros, and sub-matrix ḊΛ(k) ∈ Hm×|Λ(t) |. The non-
commutativity of quaternion multiplication makes tra-
ditional real-valued gradient methods inapplicable to
quaternion models, increasing the difficulty of solving
problem (3). Inspired by auxiliary operators P, Q and
Q−1 ( the inverse of Q )[10], we establish an equivalent
model of Eq. (3) as

ẋ(k)
Λ(k) = arg min

ẋ
Λ(k)∈H|Λ(k)|

1
2

∥∥∥∥Q(ẏ) − P
(
ḊΛ(t)

)
Q(ẋΛ(k) )

∥∥∥∥2

2
, (4)

where Q(ẏ) :=
[
yT

0 yT
1 yT

2 yT
3

]T ∈ R4m, Q(ẋΛ(k) ) ∈ R4|Λ(k) |,

P(Ḋ) :=


D0 −D1 −D2 −D3
D1 D0 −D3 D2
D2 D3 D0 −D1
D3 −D2 D1 D0

 ∈ R4m×4n. (5)

Setting the derivative of Q(ẋΛ(k) ) in
1
2

∥∥∥Q(ẏ) − P(ḊΛ(k) )Q(ẋΛ(k) )
∥∥∥2

2 to 0, we obtain the mini-
mizer Q(ẋ(k)

Λ(k) ) and update ẋ(k)
Λ(k) as

ẋ(k)
Λ(k) = Q−1

((
P

(
ḊΛ(k)

)T P
(
ḊΛ(k)

))−1
P

(
ḊΛ(k)

)T Q(ẏ)
)
. (6)

Once we obtain the solution ẋ(k)
Λ(k)of the last iteration, then

the optimal sparse ẋ∗ satisfies ẋ∗
Λ(k) = ẋ(k)

Λ(k) and the other
zeros.

4) Residual update: Refine residual as ṙ(k) = ẏ−ḊΛ(k) ẋ(k)
Λ(k) .

Typically, QOMP requires S iterations, whereas QGOMP
only needs ⌈S/s0⌉ < S iterations, where ⌈S/s0⌉ is the ceil-
ing operation. The steps of QGOMP are outlined in Al-
gorithm 1.

3.2 Applications

The sparse representation by QGOMP can be applied
for signal reconstruction, recognition, and clustering.

3.2.1 Color face recognition

As a typical multi-channel data, a color image can be
represented as a quaternion vector ẏ = 0 + yri + ygj + ybk,
where the RGB channels are integrated into a vector, re-
spectively. The dictionary matrix Ḋ is formed by stacking
training samples as quaternion vectors in its columns.

Specifically, we consider a face recognition tasks [11]
with N classes. Let Ci be the index set of class i samples

and C1 ∪ C2 ∪ · · · ∪ CN = C is the index set covering all
training samples. Given a test sample ẏ, we obtain the
sparse representation ẋ∗ according to QGOMP. Then we
calculate the residuals for each category by

ri =
∣∣∣∣∣∣ẏ − ḊCi ẋ

∗
Ci

∣∣∣∣∣∣2
2 , i = 1, 2, · · · ,N. (7)

Here, ẋ∗Ci
is the sub-vector of ẋ, which aligned with the

location in ḊCi . Finally, ẏ is identified in the class i with
the smallest residual by i = mini=1,2,··· ,N ri.

Algorithm 1 QGOMP Algorithm
Input: ẏ ∈ Hm, Ḋ ∈ Hm×n, sparsity S , and the count of

indices chosen per iteration s0 (s0 ≤ S and s0 ≤ m/S ).
Initialization: iteration k = 0, Λ(0) = ∅, ṙ(0) = ẏ.

1: while ||ṙ(k)||22 ≥ 10−6 and k < ⌈S/s0⌉ do
2: k = k + 1.
3: Construct set I(k) containing s0 indices by Eq. (2).
4: Update the index set Λ(k) = Λ(k−1) ∪ I(k).
5: Update ẋ(k)

Λ(k) by Eq. (6).
6: Compute residual with ṙ(k) = ẏ − ḊΛ(k) ẋ(k)

Λ(k) .
7: end while

Output: The optimal ẋ∗ with ẋ∗
Λ(k) = ẋ(k)

Λ(k) and the other
zeros.

3.2.2 Color face clustering

The sparse representation by QGOMP can also be used
in the clustering task. Ideally, samples in the same class
should reside in the same subspace, and their sparse rep-
resentations on the basis of this subspace can serve as the
basis for clustering [12]. Specifically, for samples that need
to clustering Ḋ = [ḋ1, ḋ2, · · · , ḋn] ∈ Hm×n to be clustered,
we first reprocess Ḋ by applying an orthogonal projection
transformation to obtain Ḋpre. Then we apply QGOMP
to ḋi = Ḋpreẋi to solve for the optimal sparse coefficients
ẋ∗i for each sample ḋi in self-representation. Next, each
representation ẋ∗i is arranged in a quaternion matrix Ẋ∗.
To effectively characterize the relationships between sam-
ples, we utilize Ẋ∗ to construct a real value affinity matrix
X̂, which serves as the basis for the relationship graph of
samples in clustering. The similarity between samples ḋi

and ḋ j (i, j = 1, . . . , n) are defined as follows

ˆ̇xi j = ˆ̇x ji =
1
2

(∣∣∣ẋi j

∣∣∣ + ∣∣∣ẋ ji

∣∣∣) . (8)

Here, ˆ̇xi j and ẋi j are the (i, j)-th elements for X̂ and Ẋ∗,
respectively. Subsequently, we employ the Normalized Cut



(NCut) algorithm [13] on X̂ to generate the final clustering
results.

4 Experiments

This section demonstrates the experimental perfor-
mance for QGOMP in the tasks of recovery, recognition
and clustering to fully evaluate its effectiveness and effi-
ciency.

4.1 Multi-channel sparse signal recovery

In this section, we show the signal recovery experiments
including the two cases as 1D quaternion sparse signals
and 2D color face images.

4.1.1 1D quaternion sparse signal recovery

We assess QGOMP’s performance in recovering sparse
signals from noisy measurements in the one dimensional
case and analyze the parameter of indices chosen per itera-
tion s0. The comparative methods are classic QOMP and
Qlasso algorithms. QGOMPs0 means to take s0 indices
per iteration in our method.

Experiments setting: We randomly generate a 600-
dimensional quaternion sparse signal ẋ as the ground
truth, where 5% (S = 30) elements are randomly drawn
from the Gaussian distribution N(0, 1) while the remain-
ing are set to zeros. The measurement is ẏ = Ḋẋ+ṅ ∈ H100,
where ṅ is noise following N(0, 1). The observed matrix
Ḋ = D0 + D1i + D2j + D3k ∈ H100×600 and each Di is sam-
pled from a standard normal distribution. The dvaluation
metrics we used are running time and the relative recon-
struction error RelErr as ∥ ẋ − ẋ∗ ∥2/∥ ẋ ∥2, where ẋ∗ is the
signal recovered by methods.

Recovery Results: Fig. 1 shows an example for the
sparse signal recovery performance and their running
times. We can find that the QGOMP3 method outper-
forms Qlasso in recovering quaternion sparse signals and
achieves comparable recovery performance to the QOMP
method. Significantly, the running times for QGOMP3 is
half less than that of QOMP. This result validates the ef-
fectiveness of QGOMP3 in selecting multiple most relevant
atoms in a single iteration.

Parameter s0 selecting: We examine the recovery per-
formance for different s0 values in QGOMP across signals
with varying sparsity S from 5 to 40. Fig. 2 shows Rel-
Err ( left ) and time ( right ) results. Here, we use the
s0 = 2, 3, 10, 20 and 40 and QOMP can be regarded as
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FIGURE 1. The recovery performances of comparative meth-
ods and QGOMP. The original simulated signal ẋ is marked
in red, while the recovered signal ẋ∗ is marked in blue. The
RelErr/Time (s) are QLasso: 0.1525/14.0625; QOMP: 0.0578/
1.125; QGOMP3: 0.0578/0.375.

s0 = 1. We can find that, QGOMP40 exhibits a significant
increase in reconstruction error due to incorrect atom se-
lection when s0 > S . The reconstruction error of QGOMP2
and QGOMP3 are comparable to that of the QOMP algo-
rithm. But the running times for QOMP is the largest one
among all of the methods. The QGOMP series demon-
strate a significant advantage, with their runtime being
notably shorter than that of QOMP. Hence, s0 = 2 or 3
balances the recovery accuracy and time effectively, which
is selected as the s0 in the following experiments.
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FIGURE 2. Sparse signals recovery results (average RelErr and
Time(s) over 50 trials) for different sparsity levels and s0 choices.

4.1.2 2D color face recovery

2D quaternion signals can effectively represent color im-
ages and are widely used in image processing. We use
two datasets: AR and SCface [14, 15]. The AR contains
2600 images of 100 subjects ( 50 male, 50 female ) with
varying facial expressions, illumination, and natural occlu-
sions by eyeglasses, scarves. We use images under different



FIGURE 3. Examples of AR (top) and SCface (bottom)
datasets.

expressions and illumination conditions, totaling 1400 im-
ages for subsequent experiments. The SCface includes 130
subjects, each with 16 images, with low-resolution images
captured under uncontrolled conditions. The SCface poses
a significant challenge for color face tasks. Examples from
AR and SCface are shown in Fig. 3.

Setting: All images in the AR are downsampled to size
83 × 60. The first four images of each subject in Session
1 serve as a dictionary Ḋ. The first image per subject in
Session 2, 50% pixels with salt and pepper noise or 25%
pixels with occlusion, is the test sample. The comparison
methods are real-valued Lasso, OMP, GOMP, and QLasso,
QOMP. We set s0 = 2 in QGOMP and select PSNR as
evaluation criteria.

Recovery from salt and pepper noise: In Fig. 4, the
optimal results are bold. Under the influence of salt and
pepper noise, real-valued methods fall short of the cor-
responding quaternion-valued methods in PSNR. QOMP
and our QGOMP achieve optimal recovery results, partic-
ularly in preserving fine details like edges, textures, and
smooth regions.

(a) Original (b) Noisy (c) Lasso (d) OMP (e) GOMP (f) QLasso (g) QOMP (h) QGOMP

FIGURE 4. Recovery performances of 50% pixels damaged by
salt and pepper noise. (a) Original image; (b) Noisy image;
reconstructed images by various methods with PSNR: (c) Lasso:
18.28; (d) OMP: 19.93; (e) GOMP: 24.44; (f) QLasso: 22.19; (g)
QOMP: 24.50; (h) QGOMP: 24.50.

Recovery from occlusion: In Fig. 5, the best results
are bold. Real-valued methods struggle to distinguish
occluded regions, leaving many baboon colors in the re-
covered images. In contrast, quaternion-based methods,

leveraging their precise characterization of the relation-
ships between color channels, successfully overcome this
problem. Among these methods, QOMP and QGOMP
yield the highest PSNR.

(a) Original (b) Noisy (c) Lasso (d) OMP (e) GOMP (f) QLasso (g) QOMP (h) QGOMP

FIGURE 5. Recovery performances of 25% pixels covered by
occlusion. (a) Original image; (b) Noisy image; reconstructed
images by various methods with PSNR: (c) Lasso: 18.17; (d)
OMP: 19.33; (e) GOMP: 22.20; (f) QLasso: 22.98; (g) QOMP:
25.22; (h) QGOMP: 25.22.

4.2 Color face recognition

In this section, we evaluate the capability of our
QGOMP classifier in face recognition color. We analyze
the recognition rate in the SCface dataset in varying pro-
portions of training, which is one of the most challenges
color face dataset since its low resolution. In this dateset,
we use images for 40 subjects, with 16 images per person
and each of them is resized to 20 × 15. We select images
in different proportions for training and the remaining for
testing. We show one trial of the experiment for the recog-
nition in Tab. 1.

TABLE 1. Recognition rate (%) results of each method with
different training percentage (pt%) on the SCface dataset of 40
classes in one trial. The optimal results are bold, and suboptimal
results are underlined.

pt% 30 40 50 60 70
QLasso 79.5 79.5 82.2 85.8 82.5
QOMP 82.0 83.8 85.0 85.4 82.0

QGOMP2 83.0 83.5 83.8 85.0 85.5
QGOMP3 85.0 84.8 82.2 83.3 83.0
QGOMP10 84.3 84.8 86.3 85.0 87.0

Result: In Tab. 1, we can find that across different
training set sizes, QGOMP10 consistently shows the high-
est recognition rate in three experiments. This suggests
that when the data is low resolution, selecting an appro-
priately large s0 can better leverage the correlation among
atoms of the same class.

4.3 Color face clustering

In this section, we conduct clustering performance on
the AR dataset. In AR, each image is downsampled to a



TABLE 2. Clustering ACC (%) with different image sizes and
the number of classes on AR dataset in one trial. The best
results are in bold.

Classes C = 10 C = 50 C = 100

Size 8 × 6 20 × 15 8 × 6 20 × 15 8 × 6 20 × 15

K-means 29.3 31.0 21.9 22.7 19.8 20.2
LRR 35.9 38.9 13.0 14.8 6.9 9.1

TLRR 76.6 100.0 68.9 80.5 57.0 72.2
SSC 60.5 64.8 43.4 54.7 44.0 52.9

QLasso 92.9 70.7 73.2 74.3 65.1 66.2
QOMP 98.6 95.0 79.8 81.4 61.6 76.0

QGOMP3 98.6 95.1 81.7 82.9 61.2 76.1

size of 20 × 15, and the first seven images of each subject
from Session 1 and Session 2 are selected as the samples.
We investigate the clustering performance for QGOMP
varying different image size and the number of categories.
The competing methods we used are K-means, Low-Rank
Representation (LRR) [16], and Tensor Low-Rank Repre-
sentation (TLRR) [17], Sparse Subspace Clustering (SSC)
[18]. The parameters are recommended by the authors.
The evaluation metric is clustering accuracy.

Result: In Tab. 2, we show one of the c lusting
performance example. We can find that comparing to
QOMP, QGOMP can achieve certain enhancements in
clustering performance in most of the image sizes and cat-
egories, which demonstrates its strong adaptability to var-
ious tasks.

5 Conclusion

This paper proposes a Quaternion Generalized Orthog-
onal Matching Pursuit (QGOMP) algorithm in sparse rep-
resentation for holistic processing of multi-channel signals.
The algorithm leverages the correlations between atoms to
more efficiently select s0 atoms during each iteration, ac-
celerating QOMP. In addition, we design classifiers and
clustering algorithms based on QGOMP for recognition
and clustering tasks. Both synthetic and real dataset ex-
periment results exhibit the superiority and flexibility of
QGOMP in quaternion sparse signal recovery, color image
recovery, recognition and clustering.
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