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Abstract:

Multi-view clustering aims to obtain a unified feature represen-
tation by integrating data from multiple views, enabling accurate
clustering of data points in low-dimensional subspaces. However,
existing approaches generally overlook the issue of data noise in
some views when constructing a common feature representation
by combining multi-view information, resulting in poor robust-
ness of clustering models. To address this challenge, this paper
proposes a robust multi-view low-rank representation clustering
algorithm based on structural consistency. The method effectively
extracts consistent information among different views by min-
ing the similarities between samples to construct a shared struc-
tured matrix, which guides the learning of self-representation
matrices for each view. Meanwhile, to mitigate the impact of
noisy views on model performance, a structured weighting strat-
egy is proposed. By calculating the differences between the self-
representation matrices of each view and the shared structured
matrix, view weights are determined to suppress the interference
of sample noise. Experimental results demonstrate that, com-
pared with existing methods, the proposed algorithm exhibits su-
perior performance in multi-view clustering tasks with noisy data.
Especially in complex scenarios where view data is damaged, it
can significantly improve clustering accuracy and stability, pro-
viding a more reliable solution for multi-view clustering analysis.
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1. Introduction

With the rapid development of information and communi-
cation technology, the acquisition and transmission of data is
becoming more and more convenient. The scale of the data
increases rapidly. Big data attracts increasing attention and be-
comes an important research topic in the field of artificial in-
telligence as it contains a large amount of useful information.
Data Mining generally aims to discover patterns and knowl-
edge hidden in a large amount of data through relevant algo-
rithms [8]. Depending on different applications, data mining
can be roughly divided into tasks such as regression analysis
[9], classification [10], clustering [11], etc. The performance
of different task models largely depends on the data representa-
tions (features) they utilize, and a good representation learning
can more easily extract useful information from the data for
classification or prediction [12]. Therefore, researchers have
conducted extensive research on representation learning tasks,
achieving a series of related researches and applying them to
related fields such as speech recognition [13], image process-
ing [14], etc.

In practical applications, noise of data exists in the represen-
tation learning tasks extensively, and many works have tried to
mitigate the impact of noise on the learning tasks. Sparse Sub-
space Clustering (SSC) [15] learns a sparse self-representation
matrix so that samples can be linearly represented by sam-
ples in the same subspace, thus dividing the data into differ-
ent subspaces. However, Sparse Subspace Clustering is eas-
ily affected by the noise. Therefore, Low-Rank Representation
(LRR) [16] is proposed to reduce the influence of noises and



outliers by constraining the rank of the representation matrix,
and the learned subspace is more sparse. Although LRR im-
proves the robustness of the model by decomposing errors and
constraining them with norm constraints, complex noise can
still destroy the intrinsic structure of the data. Therefore, many
works have tried to use the abundant information of multi-
view data to mitigate the negative influence of complex noises.
The corresponding multi-view subspace representation learn-
ing methods are proposed.

Multi-view data aims to describe the object from different as-
pects, while multi-view subspace clustering is proposed by ex-
tending the subspace clustering into multi-view scenario [17].
The purpose of multi-view subspace clustering is to learn a
unified subspace representation from the multiple subspaces
of multi-view data, in order to handle high-dimensional data
more easily when establishing clustering models by using the
multiple information of different views. The multi-view sub-
space clustering method assumes that multiple views are de-
rived from the same latent space, and the key problem is to
learn a consistent representation of multiple views. Most ex-
isting methods first learn a unified subspace representation and
then cluster the unified subspace representation. For example,
Chaudhuri et al. [18] proposed a multi-view subspace learning
method based on canonical correlation analysis (CCA), which
uses canonical correlation analysis to obtain a low-dimensional
representation of high-dimensional data from each view and
then aligns the low-dimensional representation for clustering.
Guo [19] proposed a subspace representation learning method
which realizes clustering on the learned common subspace
representation of the multi-view data. Wang et al. [20] per-
formed subspace clustering on a common view of multiple
views. Gao et al. [21] performed subspace clustering in each
view and ensured consistency of clustering between different
views by using common metrics. In addition, the sparse sub-
space clustering-based method [22] uses sparse representation
to construct the affinity matrix of each view, then fuses the
affinity matrices to obtain a multi-view affinity matrix for clus-
tering. Tensor decomposition-based methods [23] [24] [25]
combined the self-representation matrices of each view to ob-
tain a three-dimensional representation matrix, and apply ten-
sor sparsity constraints to the representation matrix to ulti-
mately obtain a fused self-representation matrix. Low-Rank
representation-based methods [26] [27] [28] obtained comple-
mentary features of different views by constructing a low-rank
representation of each view and obtained the general low-rank
representation sparse matrix which is used for clustering by
fusing or constraining the low-rank representation of differ-
ent views. Among the low-rank representation-based meth-

ods, RMSC [26] adopted the low-rank sparse decomposition
for the feature fusion of multi-view data. ILRSO [27] ob-
tained the common sparse representation of different views by
learning shared representations in multi-view spectral cluster-
ing. MLRR [28] constructed a multi-view subspace clustering
incidence matrix which is used to learn the intrinsic feature of
the multi-view data by using the angle information of the main
direction of the low-rank representation under symmetric con-
ditions. Although the above-mentioned methods incorporated
low-rank representation with multi-view learning, they ignore
that noise may exist in different views and the clustering results
maybe influenced by noisy view. In this paper, a robust clus-
tering method via multi-view low-rank clustering (RCMLRR)
is proposed to mitigate the negative influence of the noisy view
by weighting. The main contribution of this paper can be sum-
marized in threefold.

1. A robust weighted multi-view low-rank clustering method
with consistency structure is proposed based on the low-
rank representation-based multi-view subspace clustering.

2. The consistency information of different views is learned
by using the similarity feature between views to construct
the common structural matrix. The constructed matrix is
used to learn the self-representation matrix of each view.

3. The influence of the noisy view is mitigated by setting the
difference between the self-representation matrix of each
view and the common structured matrix as view weight.

2. Problem formulation

Low-Rank Representation is extended into multi-view sce-
nario in order to utilize multiple information of the object to
avoid the influence of noise. However, the noisy view of
multi-view data may lead to unideal learning results. The
Robust Clustering via Multi-view Low-rank Representation
(RCMLRR) method is proposed in this paper, which combines
low-rank clustering with multi-view learning and is robust to
noises by using consistency structural information of multiple
views and adding weights to views.

In this paper, lowercase letters such as x represent vec-
tors and uppercase letters such as X represent matrices. A
dataset with n samples of d dimensionality is represented as
X = [x1, x2, ..., xn] ∈ Rd×n. Subspace clustering assumes
that each sample can be represented by the linear combination
of samples in the same subspace, the learned subspace which
will be further used for clustering is solved by:

min
Z,E

L(X,XZ) + λΩ(Z), s.t. X = XZ + E (1)



where Z = [z1, z2, ..., zn] ∈ Rn×n is the reconstruction coeffi-
cient matrix, zi is the subspace representation of xi, E ∈ Rd×n

is the reconstruction error, L(·, ·) is the loss function that used
to measure reconstruction error, Ω(·) is the regularizer, λ is the
parameter that used to balance the loss function and the regu-
larizer. The spectral clustering is applied in (|Z|+ |ZT |)/2, | · |
is the absolute operator.

The objective function 1 can be extended into multi-view
scenario as:

min
Z(v),E(v)

nv∑
v=1

L(X(v), X(v)Z(v)) + λvΩ(Z
(v)),

s.t. X(v) = X(v)Z(v) + E(v), v = 1, 2, · · · , nv,

(2)

where nv is the number of views, X(v) is the v-th view Z(v)

represents the subspace representation matrix of the v-th view,
E(v) is the reconstruction error of the v-th view, λv is the bal-
ance parameter of the v-th view.

In the proposed SMvLRC method, the low-rank representa-
tion of each view in multi-view data is extracted by:

min
{Zi,Ei}n

i=1

n∑
i=1

g(Xi, Ei) + λ

n∑
i=1

f(Xi, Zi), (3)

where f(·) is the learned constraint of the low-rank structure
that used the original views, g(·) is the learned constraint of
noise, parameter λ > 0 is used to balance the influence between
low-rank representation and regularizer.

Aim to constrain the weight of x(v)
i to x

(v)
j is equal to the

weight of x(v)
j to x

(v)
i , the strategy in [28] is used by applying

symmetric constraint on multi-view low-rank representation:

min
{Z(v),E(v)}nv

v=1

nv∑
v=1

∥∥∥E(v)
∥∥∥
2,1

+ λ1

∥∥∥Z(v)
∥∥∥
∗
,

s.t. X(v) = X(v)Z(v) + E(v), Z(v) =
(
Z(v)

)T

,

v = 1, 2, · · · , nv.
(4)

Inspired by the method proposed in [29] [30], a structural
matrix M which reflects the structure relationship of the sam-
ples is used to help Z better reveal the structural information of
the data. Meanwhile, in order to ensure that the target structure
of each view is consistent, the same structural matrix M is used

to constrain each view, function 4 can be improved as:

min
{Z(v),E(v)}nv

v=1

nv∑
v=1

∥∥∥E(v)
∥∥∥
2,1

+ λ1

∥∥∥Z(v)
∥∥∥
∗
+ λ2∥M − Z(v)∥2F

s.t. X(v) = X(v)Z(v) + E(v), Z(v) =
(
Z(v)

)T

,

v = 1, 2, · · · , nv.
(5)

Considering that the feature similarity of corresponding sam-
ples is relatively large and multiple views have the same struc-
tural matrix, the structural matrix M is formed as:

Mij =
exp(max{x(v)∗T

i x
(v)∗
j , v = 1, 2, · · · , nv} − δ)

1 + exp(max{x(v)∗T
i x

(v)∗
j , v = 1, 2, · · · , nv} − δ)

,

(6)
where x

(v)∗
i and x

(v)∗
j are the normalized result of the v − th

view x
(v)
i and x

(v)
j , δ is the average value of all x(v)∗T

i xj
(v)∗.

Finally, the weight of each view is calculated to reflect the
different contributions of different views and to reduce the neg-
ative influence of noisy views. In the proposed RCMLRR
method, the weight is calculated according to the difference
between each view and the structural matrix M by wv =

1
∥Z(v)−M∥2

2+ϵ
, where ϵ is the extreme decimal used to con-

trol the value of the denominator is not zero. The normal-
ized weight is w(v) = wv∑nv

v=1 wv
, and the objective function of

RCMLRR is:

min
{Z(v),E(v)}nv

v=1

nv∑
v=1

w(v)
∥∥∥E(v)

∥∥∥
2,1

+ λ1

∥∥∥Z(v)
∥∥∥
∗
+ λ2∥M − Z(v)∥2F

s.t. X(v) = X(v)Z(v) + E(v), Z(v) =
(
Z(v)

)T

,

v = 1, 2, · · · , nv.
(7)

3. Optimization

Equation 7 is iteratively solved by the Augmented Lagrange
Multipliers (ALM) algorithm [31]. By introducing a relaxation
variable J (v), the objective function can be converted to:

min
Z(v),J(v),E(v)

w(v)
∥∥∥E(v)

∥∥∥
2,1

+ λ1

∥∥∥J (v)
∥∥∥
∗
+ λ2∥M − Z(v)∥2F

s.t. X(v) =X(v)Z(v) + E(v), Z(v) = J (v), J (v) =
(
J (v)

)T

.

(8)



The augmentation Lagrange function of equation 8 is:

min
Z(v),J(v),E(v),J(v)=(J(v))

T
,Y1,Y2

w(v)
∥∥∥E(v)

∥∥∥
2,1

+ λ1

∥∥∥J (v)
∥∥∥
∗

+λ2∥M − Z(v)∥2F + tr
[
Y T
1

(
X(v) −X(v)Z(v) − E(v)

)]
+tr

[
Y T
2

(
Z(v) − J (v)

)]
+

η

2

(∥∥∥X(v) −X(v)Z(v) − E(v)
∥∥∥2
F

+
∥∥∥Z(v) − J (v)

∥∥∥2
F

(9)
where Y1 and Y2 are the Lagrange multipliers, η > 0 is the
adaptive penalty parameter. J (v), Z(v), E(v) can be solved it-
eratively. In the optimization process, When optimizing a vari-
able in the (t + 1)-th iteration, the other two variables in the
t-th iteration are fixed.

The Lagrange multipliers and penalty parameters are updated by:

Y
(v)
1,t+1 =Y

(v)
1,t + ηt(X

(v) −X(v)Z
(v)
t+1 − Et+1),

Y
(v)
2,t+1 =Y

(v)
2,t + ηt(Z

(v)
t+1 − J

(v)
t+1),

ηt+1 =min(ρηt, ηmax),

(10)

ρ and ηmax are constants.
The view weight W is updated by:

w(v) =
wv∑nv
v=1 wv

, (11)

where wv = 1

∥Z(v)−M∥22+ϵ
.

Finally, the optimization process of solving {Z(v)} from equation
7 is show in Algorithm 1.

After the self-representation matrix Z(v) of each view is acquired,
the spectral clustering algorithm is used to obtain the final clustering
results. Firstly, in order to fuse the self-representation structure of each
view, the fused multi-view self-representation matrix is calculated by:

Z∗ =

nv∑
v=1

Z(v) (12)

Then, the SVD decomposition Z∗ = U∗S∗V ∗ is imposed on Z∗:
and D = U∗(S∗)1/2. The affinity matrix A is calculated by:

Aij = (
dTi dj

∥di∥2∥dj∥2
)2α (13)

where di is the i-th volume of matrix D, α is the control hyperparam-
eter that can ensure each value of the affinity matrix A for subspace
clustering is positive.

To obtain the spectral clustering results of the affinity matrix, the
corresponding Laplacian matrix is calculated by L = T− 1

2 (T −
A)T− 1

2 , where T =
∑nv

v=1 T
(v), T (v) is the diagonal matrix with

diagonal element: T (v)
ii =

∑
j Z

(v)
ij .

Algorithm 1 The ALM algorithm of equation 7

Input Multi-view data: X = {X(v)}nv
v=1, parameter: λ1, λ2,

ϵ.
1: Initialization: {J (v) = Z(v) = 0}nv

v=1, {Y (v)
1 = Y

(v)
2 =

0}nv
v=1, ρ = 1.1, η1 = η2 = 1e−2, ηmax = 1010, ϵstop =

1e− 6.
2: while The convergence condition is not satisfied: do
3: for v = 1 : nv do
4: Fix other parameters, update J (v).
5: Fix other parameters, update Z(v).
6: Fix other parameters, update E(v).
7: Update multipliers:

Y
(v)
1,t+1 =Y

(v)
1,t + ηt(X

(v) −X(v)Z
(v)
t+1 − Et+1)

Y
(v)
2,t+1 =Y

(v)
2,t + ηt(Z

(v)
t+1 − J

(v)
t+1)

8: end for
9: Update view weight: w(v) = wv∑nv

v=1 wv
, and:

wv =
1

∥Z(v) −M∥22 + ϵ

10: Update parameter ηt+1:

ηt+1 = min(ρηt, ηmax)

11: Check if the convergence condition is satisfied:
12: for v = 1 : nv do
13: if ∥Z(v)−J (v)∥max < ϵstop and ∥X(v)−X(v)Z(v)−

E(v)∥max < ϵstop then
14: end
15: end if
16: end for
17: end while
Output {Z(v)}nv

v=1

Then, the eigenvectors {vi}ki=1 corresponding to the k-th minimum
eigenvalues of the Laplacian matrix L are obtained by SVD decom-
position and the eigenvector is formed as: V = {vi}ki=1 ∈ Rn×k.
Finally, n samples with dimensionality k in the eigenvector V are sub-
jected to k-means clustering to obtain the final result.

4. Experiments

4.1 Datasets and experimental setting

The database used to evaluate the performance of the proposed
method is introduced as follows.



Yale dataset contains 165 grayscale images of 15 individuals.
Each person has 11 images, and the size of each image is 32 × 32 pix-
els. In the experiments, pixel features, Local Binary Pattern (LBP) [1]
and Gabor features [2] are extracted as three views.

3-sources dataset consists of 948 news articles, which are man-
ually classified into 6 categories, covering 416 different news stories.
There are 169 stories that appear in these three online news sources:
BBC, Reuters, and The Guardian, and each of them can be regarded
as a single view of a story. Each story is labeled with a theme from the
dataset as its category label.

Four indicators are adopted to evaluate the clustering performance
of the proposed algorithm: Clustering Accuracy (ACC); Normal-
ized Mutual Information (NMI), F-measure, Adjusted Rand index
(ARI). Among them, the clustering accuracy is defined as ACC =
1
n

∑n
i=1 δ(ci,map(xi)), where ci represents the class label of xi,

δ(x, y) represents the equivalence between x and y, and map(xi) is
a permutation mapping function that maps each clustering label xi to
one of the class labels among all the class labels.

4.2 Comparison results on the Yale dataset with noises

The proposed RCMLRR in this paper focuses on the clustering
problem of data with noisy views. Therefore, in order to test the ro-
bustness of the proposed method, the Yale face dataset is selected as
the basic dataset in this experiment. Then, a noisy view is constructed
by adding different types of occlusions to some of the images in View
1. The specific situations are as follows, 20% of images were ran-
domly selected and augmented with 1

2
× 1

2
size block occlusions in

three types: black, white, and random pixels.

TABLE 1. Clustering results of Yale dataset with black-block noise

method ACC NMI F-measure ARI
LRRV 1 [16] 56.97 60.33 39.62 35.59
LRRV 2 [16] 69.70 70.64 53.73 50.60
LRRV 3 [16] 68.48 69.34 52.38 49.15

LRRBestSV [16] 69.70 70.64 53.73 50.60
LRRConcat [16] 67.88 68.08 50.67 47.33

GMC [4] 61.21 66.21 47.63 43.90
RMSL [5] 73.33 69.06 43.45 38.95

MCLES [6] 69.09 71.86 52.64 49.10
MLRR [28] 67.23 66.12 73.67 38.38
LRSSC [3] 58.63 56.58 60.50 38.41
LMVSC [7] 52.90 51.28 56.33 27.24

RCMLRR (ours) 75.12 73.42 80.02 55.20

In the comparison experiment, the proposed method is compared
with low-rank representation-based multi-view clustering methods:
LRRBestSV [16], LRRConcat [16], GMC [4], RMSL [5], MCLES
[6], MLRR [28], LRSSC [3], LMVSC [7]. The parameters of the
comparative methods were manually set according to the correspond-
ing papers, and the optimal results of each method were presented. In
the proposed RCMLRR, there are a total of three parameters: λ1, λ2

and α. Among them, λ1 is related to the data quality of data from
different views, and λ2 depends on the difference between different
views and the common constraints.

The last step of the comparison methods is to run with the k-means
algorithm. In this experiment, we set λ1 = 100, λ2 = 0.1, α =
1, the standard k-means implementation provided by MATLAB was
adopted, and all the methods shared the same k-means parameters.

TABLE 2. Clustering results of Yale dataset with white-block noise

method ACC NMI F-measure ARI
LRRV 1 [16] 59.39 63.16 41.78 37.61
LRRV 2 [16] 69.70 70.64 53.73 50.60
LRRV 3 [16] 68.48 69.34 52.38 49.15

LRRBestSV [16] 69.70 70.64 53.73 50.60
LRRConcat [16] 65.45 69.25 51.99 48.72

GMC [4] 63.64 66.45 42.65 38.11
RMSL [5] 75.15 74.88 55.22 51.94

MCLES [6] 70.30 71.44 52.91 49.37
MLRR [28] 71.06 58.04 66.70 54.61
LRSSC [3] 58.63 56.58 60.50 38.41
LMVSC [7] 52.90 51.28 56.33 27.24

RCMLRR (ours) 78.79 76.80 82.80 58.49

TABLE 3. Clustering results of Yale dataset with random-block noise

method ACC NMI F-measure ARI
LRRV 1 [16] 65.45 65.95 47.82 44.33
LRRV 2 [16] 69.70 70.64 53.73 50.60
LRRV 3 [16] 68.48 69.34 52.38 49.15

LRRBestSV [16] 69.70 70.64 53.73 50.60
LRRConcat [16] 67.88 68.08 50.67 47.33

GMC [4] 60.61 66.28 47.11 43.31
RMSL [5] 75.15 74.83 55.69 52.51

MCLES [6] 73.33 76.46 60.18 57.33
MLRR [28] 71.06 58.04 66.70 54.61
LRSSC [3] 58.63 56.58 60.50 38.41
LMVSC [7] 52.90 51.28 56.33 27.24

RCMLRR (ours) 77.57 76.79 82.26 59.05

Tables 1, 2, and 3, respectively, show the results obtained by adding
1
2
× 1

2
black block, white block, and random block occlusions to 20%

of the images in View 1, and then performing multiview clustering us-
ing the algorithm. The results show that adding different occlusions
will reduce the performance of the single-view low-rank representa-
tion, especially when there is black block occlusion. However, for
random block occlusion, the performance degradation of the single-
view low-rank representation is not obvious, which proves that the
low-rank representation itself can effectively eliminate the influence
of Gaussian noise, consistent with the conclusion in the literature [16].
For the data with noisy views, the proposed method has achieved the
best results. It is worth noting that the clustering results obtained by



the proposed algorithm are similar to those of the data without noise,
demonstrating the robustness of the algorithm to noisy views.

4.3 Comparison results on the data without noises

In this section, we employ meticulously designed experimental pro-
cedures to comprehensively validate the properties of proposed algo-
rithm. To verify the effectiveness of the proposed method on data with-
out noises, experiments were conducted on the Yale dataset and the
3-sources dataset respectively. Tables 4 and 5 present the experimen-
tal comparison results of the Yale dataset and the 3-sources dataset,
respectively. In the experiment, the specific values of each parameter
in the Yale dataset are λ1 = 100, λ2 = 0.1, α = 1, the specific values
of each parameter in the Yale dataset are λ1 = 2, λ2 = 0.1, α = 5.

TABLE 4. Clustering results of different methods on Yale

Method ACC NMI F-measure ARI
LRRBestSV [16] 70.30 70.93 54.80 51.78
LRRConcat [16] 69.70 70.31 52.77 49.57

GMC [4] 65.45 68.92 44.10 48.01
RMSL [5] 77.58 75.53 48.67 44.50

MCLES [6] 71.52 73.28 58.51 55.66
MLRR [28] 74.55 68.62 77.12 43.18
LRSSC [3] 67.24 72.18 53.10 49.73
LMVSC [7] 76.79 60.96 77.55 51.01

RCMLRR(ours) 78.18 77.69 82.58 60.78

TABLE 5. Clustering results of different methods on 3-sources

Method ACC NMI F-measure ARI
LRRBestSV [16] 60.95 51.96 66.12 44.48
LRRConcat [16] 66.27 63.11 71.20 53.46

GMC [4] 85.21 73.97 83.27 73.19
RMSL [5] 78.46 73.14 80.47 70.38

MCLES [6] 83.02 74.60 84.21 78.28
MLRR [28] 89.29 80.36 89.67 85.22
LRSSC [3] 78.70 69.70 79.30 63.65
LMVSC [7] 76.92 65.38 79.24 60.57

RCMLRR(ours) 89.35 80.49 89.76 85.23

As can be seen from the experimental results, compared with the
optimal result LRRBestSV of the single-view low-rank representation
algorithm, the proposed method has been improved, indicating that
the proposed algorithm can effectively address the deficiencies of the
single-view low-rank representation. In addition, the proposed method
can achieve optimal results on different datasets when compared with
other multi-view clustering algorithms according to the showed re-
sults, which verifies the effectiveness of the proposed method under
noise-free conditions. Specifically, the algorithm demonstrates robust
resilience to noise interference. In addition, its efficacy is equally pro-

nounced when applied to datasets without noise, highlighting its ver-
satility and reliability across diverse data conditions.

5. Conclusions

In this paper, a multi-view low-rank representation clustering al-
gorithm based on structural consistency is proposed. Using similar-
ity features among samples, we construct a common structured ma-
trix. This matrix serves as a supervision mechanism during the self-
representation matrix learning process of each view, facilitating the
extraction of consistent representations across diverse views. To miti-
gate the influence of views with inferior structures, the weight of each
view is calculated. This is achieved by calculating the discrepancies
between the self-representation matrix of each view and the common
structured matrix. Multi-view clustering experiments conducted un-
der various noise conditions validate the effectiveness of the proposed
algorithm. The algorithm significantly reduces the impact of noisy
views, enabling the extraction of more robust feature representations.
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