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Abstract:

Graph Neural Networks (GNNs) have achieved remarkable
performance in semi-supervised node classification tasks.
However, they often suffer from the under-reaching problem,
where sparse labeled nodes limit the propagation of super-
vision signals, negatively affecting representation learning
and generalization. To address this issue, we propose a novel
Structure-aware Mixup strategy for graph data augmenta-
tion, which leverages structural similarity based on node
degree and PageRank scores to guide interpolation between
node pairs. This approach dynamically generates mixup
weights, ensuring augmented samples are both semantically
consistent and structurally coherent. Extensive experiments
on five benchmark datasets demonstrate that our approach
significantly improves classification performance under low-
label conditions while achieving a good balance between
augmentation quality and model stability. These results
highlight the effectiveness and generalizability of the proposed
structure-aware mixup strategy in graph data augmentation.
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1. Introduction

With the rapid emergence of graph-structured data in
domains such as social networks, bioinformatics, and rec-
ommender systems, Graph Neural Networks (GNNs) [?]
have become one of the core approaches for modeling
graph data. By aggregating information from neighboring
nodes, GNNs can effectively capture the underlying struc-

tural and semantic relationships within graphs. They have
been widely applied to tasks such as node classification,
link prediction, and graph classification. In particular, un-
der semi-supervised node classification settings, GNNs are
capable of achieving strong representation and classifica-
tion performance even with only a small number of labeled
nodes.

However, existing GNN models still face several chal-
lenges in practical applications. One key issue is the sparse
distribution of labeled nodes in the graph. Due to limi-
tations in graph structure and the model’s propagation
range, many unlabeled nodes struggle to receive effective
supervision signals, leading to the under-reaching phe-
nomenon [?]. This issue becomes more pronounced when
the model is shallow or the graph is sparsely connected,
significantly hindering the model’s generalization ability
under low-label-rate conditions.

To address the above issues, data augmentation has
been introduced into Graph Neural Networks in recent
years, aiming to improve model learning capability and
robustness by generating new training samples. Among
these methods, Mixup-based approaches create virtual
samples by interpolating the features and labels of differ-
ent nodes, and have shown promising results in graph clas-
sification tasks. However, applying Mixup to node classi-
fication still faces two major challenges: First, traditional
Mixup often ignores the structural relationships between
nodes in the graph and performs interpolation solely in the
feature space, which may lead to structural-semantic con-
flicts. Second, the augmented samples may lack topologi-
cal consistency within the graph, making them susceptible
to introducing noisy interference [?].



To tackle the above challenges, this paper proposes
a Structure-aware Mixup method that leverages graph
structural features to guide the data augmentation pro-
cess, aiming to generate virtual training samples with
greater structural coherence and semantic consistency.
Specifically, a structure-aware mechanism is introduced
during sample generation by combining local node de-
gree and global PageRank scores to compute the struc-
tural similarity between node pairs. This similarity is
then used to dynamically adjust the mixup weights. Com-
pared to random mixing strategies, the structure-aware
Mixup can effectively preserve the relational structure
within the graph, thereby improving the quality of aug-
mented samples and enhancing the model’s generalization
performance.

The main contributions of this work are as follows:

(1) We propose a structure-aware Mixup method that
leverages structural similarity between node pairs to guide
feature and label interpolation, improving consistency and
mitigating the under-reaching issue in GNNs.

(2) A structural similarity function combining node de-
gree and PageRank is designed to adaptively generate
mixup weights, balancing semantic coherence with sam-
ple diversity.

(3) Extensive evaluations on five benchmark node clas-
sification datasets show that our method achieves state-of-
the-art or competitive performance across multiple GNN
architectures, demonstrating its effectiveness and general-
izability.

2. Related Work

Graph Neural Networks (GNNs) have emerged as a
core method for processing graph-structured data and
are widely applied in domains such as social networks,
bioinformatics, and recommendation systems. In addition
to message-passing based GNNs, graph kernel techniques
have also been explored as an alternative or complemen-
tary mechanism for graph representation learning [?, ?].
Extensive research has been conducted on their modeling
capacity, label propagation, and augmentation strategies,
mainly covering the following areas:

2.1.  Challenges in GNNs and Supervision Propaga-
tion

Classic GNNs like GCN, GAT [?], and GraphSAGE [7]
learn node representations via neighbor aggregation and

perform well in semi-supervised classification. However,
shallow models have limited receptive fields, while deeper
ones suffer from over-smoothing and over-squashing, im-
pairing representation learning for distant nodes.

2.2. Data Augmentation and Mixup Extensions

To improve model robustness, various data augmenta-
tion strategies have been introduced into graph learning,
including feature perturbation, structural perturbation
(e.g., DropEdge), and subgraph sampling. Inspired by
Mixup techniques in computer vision, methods like Graph-
Mix [?] have applied interpolation strategies to graph clas-
sification tasks. However, most approaches in node clas-
sification fail to fully leverage structural information, re-
sulting in augmented samples with poor topological con-
sistency.

2.3. Under-reaching and Cross-node Enhancement

The under-reaching problem refers to unlabeled nodes
far from labeled ones being unable to receive sufficient
supervision signals. Some approaches address this by in-
troducing implicit skip connections or constructing virtual
augmented samples to propagate information and enhance
performance. However, these methods often rely on ran-
dom pairing and lack structural guidance, limiting their
effectiveness.

2.4.

Consistency  Regularization and  Multi-

granularity Alignment

Consistency learning methods such as DGI [?], GRACE
[?], and BGRL [?] aim to maintain stable node repre-
sentations under perturbations. IMCN [?] further intro-
duces multi-granularity consistency regularization across
node-level, class-level, and distribution-level representa-
tions, improving generalization. Nonetheless, its aug-
mentation strategy does not incorporate structure-aware
mechanisms.

2.5.  Structure-aware Augmentation Methods and
Challenges

Structure-aware augmentation methods, such as DropE-
dge and GraphDiffusion [?], aim to preserve essential
structural information. However, in Mixup-based aug-
mentation, most approaches still rely on random weights
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FIGURE 1. Overview of the proposed structure-aware Mixup
framework.

or feature space distance, overlooking structural indica-
tors. This paper proposes incorporating structural simi-
larity into the weight computation of Mixup to enhance
semantic-topological consistency and training stability of
augmented samples.

3. Method

This section presents the design and technical details of
our proposed structure-aware Mixup augmentation strat-
egy. Unlike traditional Mixup, we perform interpolation
not only in the feature and label spaces but also incor-
porate graph structural information to guide the genera-
tion of Mixup weights. This enables structure-aware vir-
tual sample generation. As illustrated in FIGURE 1, the
pipeline includes four modules: pseudo-label generation,
structural similarity computation, weight fusion sampling,
Mixup sample construction, followed by GNN feature fu-
sion and supervised training.

3.1. Problem Definition and Notations

Given an undirected graph G = (V| E, X ), where V de-
notes the set of nodes with |V| = N, E C V XV represents
the set of edges, and X € RV*4 is the node feature matrix
where each node has a d-dimensional feature vector. The
label matrix is denoted as Y € RN*¢ | where C is the num-
ber of classes, and only a small subset of nodes are labeled.
Let D; C V be the labeled node set and D,, = V'\ D; be the
unlabeled node set. This work focuses on semi-supervised
node classification, aiming to learn a prediction function
fo : X = Y that generalizes well on the entire graph. To

enhance generalization under limited supervision, we pro-
pose a structure-aware Mixup strategy that utilizes graph
structural information to guide the interpolation between
labeled and pseudo-labeled nodes.

3.2. Pseudo Labeling and Node Pair Construction

To extend the supervision signal beyond the limited la-
beled nodes, we adopt a pseudo-labeling strategy to incor-
porate high-confidence unlabeled nodes into the Mixup
augmentation process. Specifically, we use the current
graph neural network model fy to perform forward pre-
diction on each unlabeled node z; € D, obtaining a soft
label:

g = softmax(fy(z;))

where g; € RY denotes the predicted probability distri-
bution over all classes. To ensure the reliability of pseudo
labels, we introduce a confidence threshold v € (0,1) and
filter out pseudo-labeled nodes whose maximum predicted
probability is below this threshold:

Dy = {(zj,9;) | max(g;) >~}

Then, we sample a labeled node (x;,y;) € D; and a
pseudo-labeled node (z;,9;) € Dp to form a candidate
node pair. We only retain the pair if their predicted
classes are consistent, i.e., arg max(y;) = arg max(gy,), en-
suring class consistency in the interpolation. This pair-
ing strategy guarantees semantic consistency in the aug-
mented samples and mitigates the negative impact of noisy
pseudo labels during training.

3.3.  Structural Similarity Computation

In graph-structured data, nodes are not only associated
with feature attributes but also embedded within complex
topological relationships. To improve the structural ratio-
nality of the Mixup samples, we introduce a structural
similarity measure to quantify the structural consistency
between node pairs. We design a similarity function that
combines both local connectivity and global importance,
by integrating node degree and PageRank. The structural
similarity between node ¢ and node j is defined as:

Simstruct (Zaj) = w1 - DegSIm(la .7) + wa - PRSlm(Zvj)



where w; + we = 1, and wy,ws € [0,1] are weighting
coefficients balancing the two components. The degree-
based similarity is defined as:

o |d; — dj|
DegSim(4,j) =1 — —————
gSim(i. ) max(d;,d;, 1)

where d; denotes the degree of node 4, indicating the num-
ber of its adjacent edges. This component evaluates how
similar two nodes are in terms of local connectivity. The
PageRank-based similarity is defined as:

IPR; — PR}

PRSim(i, j) = 1 -
im(3, j) max(PR;, PR, €)

where PR, represents the PageRank score of node i, re-
flecting its global importance in the graph structure, and
€ is a small positive constant to prevent division by zero.
A higher structural similarity indicates that the node pair
plays a more similar role in the graph, making them more
suitable candidates for Mixup. This structural similar-
ity function guides the sample interpolation process and
prevents structural distortion and semantic inconsistency,
thereby improving the quality and discriminability of the
augmented data.

3.4. Structure-Aware Mixup Weight Generation and
Sample Construction

After constructing node pairs and computing their

structural similarity, we generate structure-aware Mixup
weights to create augmented samples. Unlike traditional
Mixup, which samples interpolation coefficients from a
Beta distribution without structural context, we fuse
structural similarity with Beta randomness to compute
the final weight. The final Mixup weight is computed as
follows:
)\ij = a'Simstruct (iaj)+(1_a)')\rand7 )\rand ~ Beta(a, Oé)
where Simgspyet (4, j) is the structural similarity defined in
Section 3.3, Aranq is a randomly sampled coefficient from
the Beta distribution, and « € (0,1) is a hyperparame-
ter that controls the balance between structural guidance
and randomness. A higher structural similarity leads to
a Mixup weight more biased toward preserving structural
consistency, while lower similarity encourages greater in-
terpolation diversity.

Using the generated weight \;;, we perform linear inter-
polation in both the feature and label space to construct

the augmented sample:
Tij = Aij - wi + (1= Aij) -

Uij = Nij - yi + (1= Aij) - 9
Here, z;; € R¢ denotes the structure-aware interpolated
feature, and g;; € R is the corresponding soft label. This
construction ensures that the augmented samples preserve
both semantic smoothness and structural coherence, thus
avoiding feature drift and enhancing generalization under
limited supervision.

3.5. Final Prediction and Classification

To capture both structural and individual characteris-
tics of augmented samples, we employ a dual-branch en-
coder integrating a Graph Convolutional Network (GCN)
for neighborhood structure and a Multi-Layer Perceptron
(MLP) for intrinsic node features. This architecture mit-
igates over-smoothing and enhances representation diver-
sity and discriminability.

Specifically, the structure-aware augmented node Z;; is
fed into both the GCN and MLP branches to obtain a
structure-dependent representation A" and an individual

representation hfjl-lp, respectively. The final representation
is formed by a weighted fusion of the two:

hij = A+ hP 4+ (1= \) - RS

where A € [0,1] is a tunable coefficient that controls the
balance between individual-specific and structure-aware
features.

The fused representation h;; is then passed into a clas-
sifier for prediction:

gfjmd = softmax(MLP o5 (hi;))

To optimize the model, we define a joint loss function
that includes three components: supervised loss on labeled
samples, Mixup loss on structure-aware augmented sam-
ples, and a multi-level consistency loss. The total loss is
formulated as:

L:total = Esup + )\1 : ﬁmirup + )\2 : Econs

Here, Lg,, denotes the standard cross-entropy loss com-
puted on labeled nodes, L,izup supervises the structure-
aware interpolated samples, and L.,,s enforces multi-
granularity consistency, including node-level, class-level,



or distribution-level alignment. The coefficients A; and Ao
control the relative contribution of each component.

Through dual-branch feature modeling and multi-
objective optimization, our framework not only performs
structure-aware augmentation in the feature space but
also improves learning stability and generalization capa-
bility, making it well-suited for semi-supervised node clas-
sification under limited label scenarios.

4. Experiments

In this section, we conduct extensive experiments on
multiple node classification benchmarks to evaluate the ef-
fectiveness of the proposed structure-aware augmentation
framework, SAMix-GNN. The experiments cover citation
networks, co-purchase networks, and co-authorship graphs
to comprehensively examine the performance, robustness,
and generalization capability of our method under low-
label scenarios.

4.1. Datasets

We evaluate SAMix-GNN on five benchmark datasets:
Cora, Citeseer, PubMed, Photo, and CS. These datasets
cover diverse graph types—citation, co-purchase, and co-
authorship—and vary in node scale, class count, feature
dimension, and sparsity, offering challenging settings for
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FIGURE 2. Model-wise Accuracy Comparison on Citation
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FIGURE 3. Performance of SAMix-GNN vs. Prior Augmenta-
tion Methods.

4.2. Comparison with Baselines and Results Analysis

We compare SAMix-GNN with several representative

testing GNN generalization and robustness. Detailed
statistics are shown in TABLE 1.
TABLE 1. Statistics of benchmark datasets
Dataset Type Nodes Edges Classes  Features
Cora Citation 2,708 5,429 7 1,433
Citeseer Citation 3,327 4,732 6 3,703
PubMed Citation 19,717 44,338 3 500
Photo Co-purchase 7,650 119,081 8 745
CS Co-authorship 18,333 81,894 15 6,805
TABLE 2. Classification accuracy (%) comparison on five

benchmark datasets

baselines, including standard GNN models such as GCN,
GAT, and SGC, as well as recent advanced augmentation
or regularization-based methods including IMCN, HCPL
[?], SMGCL [?], and RNCGLN [?]. These baselines rep-

resent different directions in graph learning, from basic

Method Cora Citeseer PubMed Photo CS
GCN 81.9 + 0.4 70.9 + 0.2 78.8 + 0.2 91.5 + 0.6

GAT 79.6 £ 0.7 72.2 + 0.8 78.6 = 0.5 90.4 £+ 0.7

SGC 81.1 £ 0.1 72.6 = 0.0 78.9 £ 0.2 91.7 + 1.2

IMCN 84.6 + 0.4 76.5 + 0.3 81.2 + 0.8 93.1 £+ 0.5 93.3 + 0.2
HCPL 84.2 +£ 0.6 74.4 £ 0.7 82.4 + 0.7 92.3 £ 0.5 93.2 + 0.2
SMGCL 85.2 + 0.4 73.8 + 0.3 81.4 + 0.3 -

RNCGLN 84.5 + 0.4 74.0 & 0.3 81.2 £ 0.6 92.2 = 0.5

SAMix-GNN 85.3 + 0.5 76.6 & 0.4 82.6 £ 0.5 93.2 &+ 0.5

91.3 £ 0.32ggregation mechanisms to consistency regularization and
90.1 + 0.6mixup-based strategies.
92.7+£00  Ag shown in TABLE 2, SAMix-GNN consistently

achieves the best or competitive accuracy across all five

03.2 + o.odatasets. Notably, on Citeseer, PubMed, Photo, and CS,
93.3 £ 0.3our method significantly outperforms other approaches,
93.4 £ 0.2demonstrating the superiority of structure-aware mixup

for node augmentation. Compared to basic models,



SAMix-GNN achieves an average improvement of more
than 4%, especially under limited labeled data. Compared
with recent augmentation methods, SAMix-GNN benefits
from structurally guided interpolation that generates se-
mantically meaningful and structurally coherent virtual
samples, which effectively improves the model’s discrimi-
nation ability on boundary nodes and enhances its robust-
ness.

To provide a more intuitive understanding of cross-
dataset performance, we further present two types of vi-
sualization: radar charts and bar plots. FIGURE 2 shows
the radar plot of GCN, GAT, SGC, and SAMix-GNN on
Cora, Citeseer, and PubMed. SAMix-GNN forms the
largest outer polygon, indicating its stable and superior
performance under diverse graph structures. FIGURE 3
displays bar charts comparing IMCN, HCPL, RNCGLN,
and SAMix-GNN on the same datasets. In Citeseer
and PubMed, SAMix-GNN outperforms the second-best
method by over 1%, showing the effectiveness of structure-
aware interpolation in improving label propagation and
sample quality.

In summary, SAMix-GNN consistently outperforms ex-
isting models across different datasets and categories,
demonstrating strong generalization and stability. The
results validate the practical value and adaptability of our
structure-aware augmentation framework for graph neural
networks.

5. Conclusions

We propose SAMix-GNN, a structure-aware Mixup
framework designed to mitigate the under-reaching issue
in graph neural networks under limited supervision. By
incorporating structural similarity into the Mixup weight
generation, our method ensures semantic and topologi-
cal consistency in the augmented samples. A dual-branch
encoder is employed to balance structure modeling and
individuality preservation, while confidence-based pseudo-
labeling enables high-quality intra-class pair construction.
Extensive experiments on benchmark datasets demon-
strate that SAMix-GNN achieves superior accuracy, ro-
bustness, and generalization compared to existing meth-
ods. Future work will explore inter-class structure-aware
Mixup, dynamic pair sampling, and integration with con-
trastive learning to further improve scalability and adapt-
ability.
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