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Abstract: 
Accurate classification of pulmonary edema severity is 

essential for timely diagnosis and effective management, as each 

severity level requires distinct therapeutic interventions. 

Differentiating between edema severity classes is particularly 

challenging due to the overlapping radiographic features of 

Chest X-ray (CXR). Deep learning, especially convolutional 

neural networks (CNNs), presents a promising solution by 

automating classification and identifying subtle features often 

difficult to detect through conventional methods. This study 

evaluates the performance of six traditional deep learning 

models for classifying pulmonary edema severity. Among these, 

CheXNet achieved the best performance, with an accuracy of 

91% and an overall AUC score of 0.88. The findings highlight 

the importance of using pretraining on CXR datasets, which 

significantly enhances model performance compared to general 

pretraining. Additionally, Grad-CAM visualization was 

employed to interpret model decisions, identifying key 

radiographic features that contribute to accurate classification 

across different severity levels. 
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1. Introduction  

Pulmonary edema is the abnormal buildup of fluids in 

the lungs, causing breathing difficulties and potentially life-

threatening complications. It can result from conditions like 

Congestive Heart Failure (CHF), cardiomyopathy, high 

altitude, or drug abuse. Severity ranges from moderate to 

severe, requiring timely treatment, especially in acute CHF 

cases. Accurate monitoring is essential for effective 

management, particularly in patients with other clinical 

conditions [1]. Classifying pulmonary edema severity is 

challenging and involves imaging, physical exams, and 

biomarkers to detect fluid buildup, symptoms, and 

underlying conditions. CXRs are the most common, 

affordable, and accessible method for diagnosing pulmonary 

edema, but require expert interpretation. Artificial 

Intelligence (AI), intense learning models like CNNs, can 

automate severity classification by analyzing medical 

images and patient data, detecting subtle patterns beyond 

human capability. These models enhance accuracy, 

consistency, and objectivity, and as they advance, they can 

integrate multi-modal data for a comprehensive edema 

assessment, aiding clinical decision-making. 

1.1 Severity level and underlying conditions for Edema 

Pulmonary Edema severity level is termed Vascular 

congestion, Interstitial Edema, and Alveolar Edema. 

     
  FIGURE 1. Edema Severity Level-wise Chest X-ray 

Distinguishing between vascular congestion, interstitial 

edema, and alveolar edema is challenging, especially in mild 

cases, as vascular congestion leads to venous hypertension, 

causing interstitial edema and potentially progressing to 

alveolar flooding. Interstitial edema is primarily caused by 

increased pulmonary capillary hydrostatic pressure, leading 

to fluid leakage around the lungs, visible as peribronchial 

cuffing, septal thickening, and Kerley B lines on X-rays, 

which can progress to alveolar edema if severe [2]. Alveolar 



 

 

edema occurs when fluid fills the alveoli due to high pressure, 

damaging the lung lining, often following interstitial edema 

and appearing centrally on imaging when pulmonary venous 

pressure exceeds 30 mmHg [3]. Radiologists diagnose 

edema levels using key features such as cephalization, 

Kerley lines, pleural effusion, bat wings, and infiltrates, 

which appear together rather than individually on CXRs. 

Analyzing these features and their anatomical significance 

can enhance diagnostic accuracy and deepen understanding. 

  
FIGURE 2. Different feature-wise Chest X-ray 

Key features of pulmonary edema on CXRs include 

Kerley lines, indicating interstitial fluid; cephalization, an 

early sign of vascular congestion; pleural effusion, fluid in 

the pleural space seen in later stages; infiltrates, white 

opacities signaling alveolar fluid accumulation; bat-wing 

appearance, bilateral hilar opacities in severe cases; and 

cuffing, bronchial wall thickening due to peribronchial fluid.   

1.2 Deep learning approaches for Edema classification 

AI, particularly deep learning, has significantly 

improved pulmonary edema classification and diagnosis by 

enhancing accuracy and efficiency. CNNs excel in image-

based classification by identifying subtle patterns. AI has 

shown strong potential in pulmonary edema detection, with 

a 2021 study achieving a 0.99 AUC for alveolar edema using 

MIMIC-CXR reports and another study reaching 92.3% 

accuracy in diagnosing canine cardiogenic pulmonary edema 

from CXRs [4]. A deep learning system, Non-local Channel 

Attention ResNet, was developed to assess pulmonary 

edema severity in COVID-19 pneumonia patients using 

2,062 lung ultrasound images, showing strong performance 

and promising potential for monitoring [5]. The COVID-19 

pandemic prompted significant research on lung disease 

classification using CXRs. This study presents a VGG-19-

based CNN model that classifies pneumonia, lung cancer, 

TB, lung opacity, and COVID-19, achieving 96.48% 

accuracy and outperforming existing methods, highlighting 

its potential for improved diagnosis and treatment [6]. A 

multichannel deep learning approach using EfficientNet-B0, 

B1, and B2 with a stacked ensemble classifier achieved up to 

99% accuracy in classifying pneumonia, TB, and COVID-19, 

outperforming existing methods for point-of-care diagnosis 

[7]. A key research trend is the development of interpretable 

CAD systems for CXR analysis, with the “CheXpert” dataset 

enabling CNNs to handle diagnostic uncertainty and 

outperform radiologists in detecting cardiomegaly, edema, 

and pleural effusion [8]. Beyond classification, some studies 

focus on detecting key edema features like cephalization and 

Kerley lines. This study used 1,000 annotated CXRs and a 

two-stage deep learning approach—lung segmentation and 

edema feature localization. The SABL network achieved the 

highest Average Precision (AP) (0.568), demonstrating 

effectiveness in identifying pulmonary edema features. [9]. 

This study compares six deep learning models 

(ResNet101, DenseNet201, DenseNet121, CheXNet [10], 

MobileNetV2, and EfficientNetB3) in diagnosing 

pulmonary edema severity from CXRs, evaluating the 

impact of general vs. medical-specific pretraining, and using 

Grad-CAM to align model explanations with radiologist-

identified features for each edema class. 

2. Materials and Methods 

Methods can be described in 3 parts, first part dataset, 

which is also the Materials in this study, second part is the 

deep learning model, and third part is Grad-CAM for the 

explainability of the model. 

2.1. Dataset 

The dataset used in this study consists of CXRs from the 

Medical Information Mart for Intensive Care (MIMIC) 

database [9]. A thoracic radiologist with over 10 years of 

experience annotated 1,000 CXR studies from 741 patients, 

marking features related to pulmonary edema, such as 

cephalization, Kerley lines, pleural effusions, bat wings, and 

infiltrates. Cephalization and Kerley lines were annotated 

with polylines, while other features used binary masks. The 

dataset's size balances practicality with robust model training 

needs. Additionally, it includes the SLY dataset, with CXR 

AP (anterior to posterior) and lateral view images, enabling 

the connection between the bounding box and Grad-CAM 

features. The severity levels annotated include “No edema,” 

“Vascular Congestion,” “Interstitial Edema,” and “Alveolar 

Edema.” The dataset consists of 741 CXRs with the 

following class frequencies: 21 for No Edema, 74 for 

Vascular Congestion, 51 for Interstitial Edema, and 595 for 



 

 

Alveolar Edema. The dataset exhibits significant class 

imbalance, with Alveolar Edema (595 X-rays) being the 

most common and Interstitial Edema (51 X-rays) the least. 

To compensate for limited normal X-rays, 681 external 

samples were added. High augmentation was applied to the 

training set, including horizontal flipping, random rotations 

(−10° to 10°), brightness and contrast adjustments (0.8 to 

1.2), and zooming (90% to 120%) to enhance model 

generalization by introducing spatial and lighting variations. 

After the augmentation and oversampling, the dataset was, 

TABLE 1. Final data distribution after augmentation 

Classes Train Validation Test 

Alveolar Edema 1000 174 150 

Interstitial Edema 945 100 100 

Normal 1000 19 19 

Vascular Congestion 1260 13 19 

The dataset was processed by resizing images to 224x224 

pixels with 3 channels, and normalizing pixel values to the 

range [0,1] for consistent intensity levels and improved 

model stability. Besides, Up sampling also explored focal 

loss with alpha scores [0.45, 0.25, 0.20, 0.10] to solve class 

imbalance. But Up sampling performed better than the Focal 

loss technique. 

2.2. Methodology 

This study employed various CNN architectures as 

backbone models for edema severity classification from 

CXR images, using transfer learning to fine-tune pre-trained 

weights for better adaptation to the dataset. Six CNN models 

are used here, and their comparison is provided below. 

TABLE 2. Model summary 

Model Pretrained 
dataset 

Depth Parameters 

ResNet101 ImageNet 209 44.7 

DenseNet121 ImageNet 402 20.2 

DenseNet201 ImageNet 242 8.1 

CheXNet ImageNet & 
Chest X-ray 14 

242 8.1 

MobileNetV2 ImageNet 105 3.5 

EfficientNetB3 ImageNet 210 12.3 

  

FIGURE 3. Model Training 

In the case of model heads, it has a linear sequential 

layer followed by a ReLU (Rectified Linear Unit) activation 

function. Another Sequential layer followed by a ReLU 

activation function. Also, flatten layer is used in neural 

networks to convert multi-dimensional feature maps (usually 

from convolutional layers) into a 1D vector before passing it 

to fully connected (dense) layers. Finally, a classification 

layer for 4 heads with the SOFTMAX activation function. To 

train the models, we used the same parameters. Every model 

is trained for 100 epochs. The batch size for the Train, 

Validation, and Test sets was 32. Also used Adam optimizer 

with 1x10e-3 learning rate. Also, adaptive learning rate 

adjustment was used, which monitored validation loss for 10 

epochs; if it did not decrease, it decreased the learning rate at 

a fixed rate. 

2.3. Metrics and Grad CAM 

Model performance is evaluated using metrics like 

accuracy, precision, recall, F1 score, and AUC. Accuracy 

measures overall correctness. Precision minimizes false 

positives, while recall focuses on capturing actual positives. 

F1 score balances precision and recall, and AUC assesses 

how well the model distinguishes between classes across 

thresholds. 

Grad-CAM is a visualization technique for interpreting 

CNNs by highlighting image regions that influence the 

model’s predictions. It uses gradients from the final 

convolutional layer to create a heatmap, showing key areas 

contributing to the decision. Grad-CAM is widely used in 

medical imaging and explainable AI to improve model 

transparency and trust. 

3. Results and Discussion 

The performance of six CNN models—CheXNet, 

EfficientNetB3, ResNet101, DenseNet201, DenseNet121, 



 

 

and MobileNetV2 was evaluated using precision, recall, F1 

score, accuracy, and AUROC, as presented in the table below. 

Among these models, only CheXNet is pretrained on CXRs, 

giving it a distinct advantage in feature extraction over 

ImageNet-pretrained models. DenseNet121 shares the same 

architecture as CheXNet, while DenseNet201 offers deeper 

layers for more feature extraction. MobileNetV2 is the most 

lightweight model, providing efficiency at the cost of depth. 

EfficientNetB3, selected from the EfficientNet family (B1–

B7), offers a balanced trade-off between accuracy and 

computational efficiency. Detailed evaluation metrics for all 

models are summarized in the following table. 

TABLE 3. Result summary of 5 models 

Test set Dense 

Net 
121 

Dense 

Net 
201 

Chexnet Mobile 

net v2 

Resne

t 
101 

Efficient 

net B3 

Accuracy 0.89 0.90 0.91 0.88 0.86 0.88 

Precision 0.74 0.78 0.79 0.75 0.71 0.74 

 Recall 0.72 0.77 0.75 0.72 0.69 0.75 

F1 score 0.73 0.77 0.77 0.73 0.70 0.75 

AUC 
score 

0.86 0.87 0.88 0.89 0.87 0.84 

CheXNet outperforms other models in accuracy, 

precision, and F1-score, while DenseNet201 excels in recall, 

which is crucial for medical classification as it minimizes 

false negatives. MobileNetV2 achieves the highest AUC, 

indicating strong class discrimination despite its lightweight 

design. Overall, CheXNet, optimized for CXR tasks, 

balances accuracy and feature extraction well, whereas 

DenseNet201 is more reliable for capturing positive cases, 

and MobileNetV2 excels in computational efficiency with 

robust AUC performance. 

As a primary, it can be seen that Models with dense 

block like CheXNet, Densenet201, DenseNet121 are the best 

performing models. By class-wise metrics result more 

information can be retrieved.  

TABLE 4. CheXNet result for individual classes 

Model Alveolar 

Edema 

Interstitial 

Edema 

Normal Vascular 

Congestion 

Precision 0.92 0.56 0.98 0.71 

Recall 0.95 0.53 1.00 0.53 

Specificity 0.94 0.97 1.00 0.97 

F1-score 0.93 0.54 0.99 0.61 

 

 

 

TABLE 5. DenseNet 201 result for individual class 

Model Alveolar 

Edema 

Interstitial 

Edema 

Normal Vascular 

Congestion 

Precision 0.93 0.58 0.96 0.65 

Recall 0.92 0.58 1.00 0.58 

Specificity 0.91 0.97 1.00 0.97 

F1-score 0.93 0.58 0.98 0.61 

DenseNet201 and CheXNet perform equally well for 

the Normal class, achieving perfect recall and specificity 

(1.0). For Alveolar Edema, CheXNet has a slightly higher 

recall (0.95 vs. 0.92), while DenseNet201 has a marginally 

better precision (0.93 vs. 0.92), making their F1-scores 

nearly identical (0.93). DenseNet201 outperforms CheXNet 

in Interstitial Edema, achieving a higher F1-score (0.58 vs. 

0.54) due to better recall (0.58 vs. 0.53). Both models 

struggle with Vascular Congestion, but DenseNet201 shows 

slightly improved recall (0.58 vs. 0.53) while maintaining the 

same F1-score (0.61). Overall, DenseNet201 demonstrates 

more consistency, particularly in difficult cases, whereas 

CheXNet maximizes recall for Alveolar Edema. However, 

CheXNet struggles with Interstitial Edema and Vascular 

Congestion, leading to low recall, precision, and F1-scores, 

highlighting its difficulty in balancing detection performance 

across all edema types. 

This study also evaluates the impact of pretrained 

weights on model performance. Despite having the same 

architecture, CheXNet, pretrained on CXRs, outperforms 

DenseNet121 in all metrics. CheXNet even rivals 

DenseNet201, demonstrating that domain-specific 

pretrained weights enable better feature extraction with 

fewer layers.  

Grad-CAM is a powerful tool for identifying which 

image regions a model focuses on when making predictions. 

In diagnosing pulmonary edema, it helps to reveal whether 

the model prioritizes lung opacities or other relevant features. 

This dataset includes bounding boxes for interim features, 

allowing comparison between model-focused areas and 

radiologist-identified regions. Among the six models used, 

CheXNet, DenseNet201, and DenseNet121 performed best, 

so their Grad-CAM visualizations were compared with the 

provided CXRs with bounding boxes. For Alveolar Edema, 

which is the most severe form of Edema. Anatomically, 

Cephalization, infiltration, and bat wings are the 

predominant features of this class. Cephalization is mostly 

dominant in the early stages of Alveolar Edema. Infiltrates 

are mostly seen in central and prehilar areas. Bat Wing is a 

unique feature of this stage. Best Performing mode CheXNet 

focuses on the costophrenic angles. Mostly, Effusion can be 

seen from blunting the costophrenic angles. 



 

 

FIGURE 4. Ground Truth (1st and 3rd), CheXNet Grad-CAM (2nd and 4th) 

for Alveolar Edema. CheXNet prioritizes Effusion features. 

  So, from Figure 4, CheXNet prioritizes Effusion features 

for Alveolar Edema classification. As CheXNet has a bias 

towards Costophrenic angles. It misses features like bat 

wings and cephalization. DenseNet201 also focuses on the 

costophrenic angle or the lower half of the lung region. Due 

to the extra layers than CheXNet, DenseNet201 can find 

subtle features like cephalization. 

FIGURE 5. Ground Truth (1st), DenseNet201(2nd), CheXNet(3rd), 
DenseNet121(4th) for Alveolar Edema. Here, CheXNet missed 

Cephalization, but DenseNet was successful. 

Here at figure 5, where CheXNet failed to focus on 

cephalization features, both Dense Net architectures were 

successful at focusing on cephalization. DenseNet 

architecture can find subtle features like cephalization and 

bat wings. Interstitial Edema is the second stage of Edema. 

It is very hard to detect because of subtle features. Still, 

anatomically, Kerley B Lines are the most common features 

for Interstitial Edema. All models performed badly in the 

Interstitial edema classification. In Figure 6, CheXNet is 

mainly focusing on the Hilar area of the CXR, which mainly 

hosts the bat structures. It focuses on the bat wing area for 

identifying Interstitial Edema. 

FIGURE 6. Ground Truth (1st and 3rd), CheXNet (2nd and 4th) for 

Interstitial Edema. CheXNet is focusing on the Hilar structure. 

Besides Bat wing’s structure, CheXNet is prioritizing 

Cephalization for Interstitial Edema classification in figure 6 

(4th). DenseNet201 performed better for Interstitial Edema 

classification. DenseNet201 also focuses on Cephalization 

and Bat wings, while Interstitial Edema classification is 

shown in Figure 7. DenseNet201 is giving Cephalization the 

most favor than Bat wings, unlike CheXNet. 

      

FIGURE 7. Ground Truth (left), DenseNet201 Grad-CAM (right) for 

Interstitial Edema. DenseNet201 was giving priority to Cephalization. 

DenseNet201 can detect underlying subtle structures 

better than CheXNet. 

       
FIGURE 8. Ground Truth (1st), CheXNet Grad-CAM (2nd), 

DenseNet201 Grad-CAM (3rd) for Interstitial Edema. CheXNet failed, but 

DenseNet201 was successful in detecting subtle features. 

Here at Figure 8, CheXNet failed to classify this as 

Interstitial Edema, but DenseNet 201 was successful in 

classifying it. Because DenseNet 201 was successful in 

detecting subtle features like cephalization that’s why it 

decided to classify this as Interstitial Edema. DenseNet121 

performs worse than the other 2 models, but it shows a 

pattern of finding features on the border of the lungs, and 

Kerley B lines are also present on the pleural border of the 

lungs as shown in figure 9. So the model does detect some 

Kerley lines features, but the model does not show any 

reliability like the other 2 models on any particular feature. 

    
FIGURE 9. Ground Truth (left), DenseNet121 Grad-CAM (right) for 

Interstitial Edema. DenseNet121 does not show any reliability to any 

features. 

Vascular Congestion is the initial Edema level. 

According to the Radiologists, Cephalization is the most 

dominant feature. Cephalization is also a dominant feature of 

Alveolar Edema. It creates confusion between Vascular 

Congestion and Alveolar Edema. CheXNet is the most 

suitable model for Vascular Congestion classification. In 

Figure 10, it is shown that, typically for Vascular Congestion, 

CheXNet is focusing on the upper part of the chest. 



 

 

Cephalizations are mostly seen upper part of the lung. 

        

Figure 10. Ground Truth (left), CheXNet Grad-CAM (right) for 

Vascular Congestion. CheXNet focuses on the upper part of the lung. 

Dense Net 201 and Dense Net 121 both performed 

badly in Vascular congestion classification. They don’t 

follow any consistent features. But DenseNet121 follows a 

pattern of following the feature upper lung like 

Cephalization, as shown in Figure 11 (2nd). 

 

Figure 11. Ground Truth (1st), CheXNet (2nd), DenseNet121(3rd), 

DenseNet201(4th) for Vascular Congestion. Only DenseNet121 gives 

importance to the upper chest for Vascular Congestion classification. 

This study explored the correlation between radiologist-

selected and model-identified features using Grad-CAM, 

revealing key regions influencing the model's decisions, but 

due to the small dataset and class imbalance, further research 

with larger datasets and attention-based models is needed for 

more reliable conclusions.  

4. Conclusions 

This study aimed to evaluate the performance of 

traditional CNN models in classifying edema severity levels 

and identifying key factors influencing model performance. 

Six models were tested, with CheXNet achieving the highest 

accuracy, precision, and F1 score. DenseNet201 excelled in 

recall, while MobileNetV2 outperformed others in AUC. 

Class-wise analysis showed CheXNet performed best in 

classifying vascular congestion, while DenseNet201 was 

superior for alveolar and interstitial edema. Both models 

showed nearly perfect performance in distinguishing normal 

cases from edema classes. 

Pretrained CheXNet outperformed DenseNet121 in 

edema detection by leveraging X-ray learned features. Grad-

CAM showed CheXNet effectively identified key edema 

patterns (pleural effusion, bat-wing signs, cephalization), 

while DenseNet201 detected subtler features but struggled 

with vascular congestion. Dense blocks proved most 

effective for severity classification, though DenseNet models 

showed inconsistent feature focus. 
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