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Abstract: 
Effective violence detection is crucial for enhancing public 

safety and preventing harmful events. This paper evaluates two 

approaches using a ResNet50-LSTM model: normal frame input 

and frame difference input. Data preprocessing involved using 

normal frames for one method and computing differences 

between consecutive frames for the other. Performance was 

assessed using ROC curves and AUROC metrics. The findings 

indicate that the frame difference method improves AUROC 

scores and reduces computational time, making it a more efficient 

and accurate solution for real-time violence detection. 
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1. Introduction 

    Violence detection in video surveillance is crucial for 

ensuring public safety, supporting law enforcement, and 

preventing crime. The World Health Organization (WHO) 

reports that violence is responsible for over 5 million deaths 

every year [1], creating a significant global economic burden 

exceeding $14.1 trillion [2]. Accurate and effective violence 

detection systems are essential for addressing these severe 

impacts by allowing for early intervention, identifying threats 

in real-time, and enabling proactive measures in high-risk 

areas. By developing and implementing these systems, we can 

work towards reducing violence, enhancing public safety, and 

creating a more secure and peaceful society. 

 The field of violence detection in video surveillance has 

gained significant attention due to rapid advancements in 

technology and increasing concerns about safety [3]. 

Traditional methods of surveillance depend heavily on human 

operators who manually monitor video feeds [4]. This 

approach is often labor-intensive and prone to errors due to 

operator fatigue and the enormous volume of data that needs 

to be reviewed. To overcome these limitations, there has been 

a shift towards developing automated systems that leverage 

advanced technology like deep learning and machine learning 

algorithms.  

Modern violence detection systems use sophisticated 

tools such as convolutional neural networks (CNNs) to analyze 

video footage and identify violent activities in real-time [10]. 

CNNs are particularly effective at extracting features from 

images, which helps in recognizing patterns associated with 

violent behavior [4] [14]. In addition to CNNs, other 

technologies such as edge computing and cloud analytics have 

significantly improved the performance of these systems. Edge 

computing allows for the processing of video data directly on 

the surveillance device, reducing latency and the need for 

extensive data transmission. Cloud analytics, on the other 

hand, enables the handling of large-scale data and supports 

more complex analysis.  

These advancements are particularly important for 

various settings, including public spaces like parks and malls, 

educational institutions such as schools, and online platforms 

where monitoring and preventing violent incidents are crucial. 

The integration of artificial intelligence (AI) and machine 

learning into surveillance systems provides a more effective 

solution compared to traditional manual monitoring. AI-driven 

systems can analyze video feeds much faster and with greater 

accuracy, which helps in swiftly responding to incidents and 

preventing potential violence [6] [13].  

Previous research in violence detection explored several 

approaches. Traditional frame-based methods involved 



 

 

analyzing individual video frames to detect violent activities. 

More advanced models used deep learning techniques such as 

ResNet-LSTM [11], which combined a Residual Network 

(ResNet) for extracting features from video frames with a 

Long Short-Term Memory (LSTM) network for understanding 

temporal patterns in video sequences [7] [15]. Other methods 

included 3D Convolutional Neural Networks (3D CNNs) and 

Recurrent Neural Networks (RNNs), which analyzed video 

sequences to detect violent content [5] [16]. While these 

methods had shown promise, they also came with certain 

limitations. For example, they might have lacked sufficient 

temporal context, had high false positive rates, or were 

vulnerable to overfitting and adversarial attacks. These issues 

highlighted the need for more robust and contextaware models 

that could provide reliable and accurate violence detection. 

 One technique that has shown potential is the frame 

difference method. This approach involves calculating the 

difference between consecutive frames in a video to detect 

motion and identify violent activities. It is computationally 

light and requires minimal training data, making it suitable for 

real-time applications. Additionally, the frame difference 

method integrates well with other computer vision techniques, 

which enhances its effectiveness by utilizing the UCF Crime 

dataset, a benchmark comprising 1900 videos depicting 

various crime scenarios, which is often used to evaluate such 

methods [8]. This data set provides a diverse range of scenarios 

that are valuable for testing the performance of violence 

detection systems.  

This study aims to compare the performance of the frame 

difference technique with traditional frame-based approaches 

using ResNet-LSTM, for violence detection [12]. The goal is 

to demonstrate that the frame difference method offers 

advantages in terms of accuracy and computational efficiency. 

By investigating this technique, we hope to find a more 

effective and efficient method for detecting violence in videos. 

This could lead to improved public safety and more effective 

surveillance systems.  

2. Dataset 

      The UCF Crime dataset has emerged as a cornerstone in 

the field of violence detection, offering a comprehensive and 

challenging benchmark for researchers. This dataset consists 

of images extracted from the UCF Crime dataset, used for real-

world anomaly detection. It includes every 10th frame from 

each video, resized to 64x64 pixels in PNG format, and covers 

14 behavior classes. Introduced by [17], the UCF Crime 

dataset contains over 1,900 video clips from real world 

surveillance, categorized into normal and violent behaviors. 

The dataset is notable for its diversity, encompassing a wide 

range of scenes with varying lighting conditions, camera 

angles, and resolutions, which mirror the unpredictability and 

complexity of real-world environments [18]. This diversity 

makes the UCF Crime dataset an ideal testing ground for 

violence detection systems, as it pushes models to generalize 

effectively across different scenarios.  

One of the key contributions of the UCF Crime dataset is 

its role in facilitating the development and evaluation of deep 

learning models tailored for violence detection. Given its 

realistic and varied content, the dataset has been widely 

adopted by researchers to benchmark the performance of 

advanced models such as Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) networks 

[19][20]. These models have been used to capture both spatial 

and temporal features from video data, helping to improve the 

accuracy and reliability of violence detection systems. The 

UCF Crime dataset’s relevance in the field is further 

underscored by its frequent citation in research papers, serving 

as a standard for comparison and validation of new techniques.  

This dataset has played a crucial role in advancing 

research into more efficient methods of violence detection, 

such as frame difference techniques. By providing a rich and 

varied set of real-world scenarios, the UCF Crime dataset 

allows researchers to test the effectiveness of these techniques 

in reducing computational complexity while maintaining or 

even improving detection accuracy. This has been particularly 

important in the development of real-time violence detection 

systems, where speed and efficiency are critical. The UCF 

Crime dataset is a crucial benchmark for violence detection, 

helping researchers develop and refine accurate and efficient 

models. Its diverse content significantly contributes to 

advancing automated surveillance systems for public safety.  

3. Method 

       In this study, we compare the performance of two video 

violence detection approaches: (1) using normal frames as 

input to a ResNet50-LSTM model, and (2) using frame 

differences as input to the same model. The goal is to evaluate 

the effectiveness of frame differences in reducing 

computational time while maintaining or improving accuracy 

and AUROC.  

3.1. Data Preprocessing 

    Two different approaches to data preprocessing were 

employed in this study:  

● Normal Frames: For the normal frames approach, we 

extract 20 frames from each video at regular intervals. 

Specifically, we divide the length of the video by 20 

to determine the time-period between two frames. For 

example, if a video is 10 seconds long, we extract 



 

 

frames at 0.5-second intervals.  

● Frame Differences: We extract 20 frame differences 

from each video for the frame differences approach. 

We first extract 21 frames at the same intervals as the 

normal frames approach. Then, we calculate the 

absolute difference between two consecutive frames 

to obtain a frame difference, as in (1).  

 

                                 𝛥𝐹 =  𝐹(𝑡)  ~ 𝐹(𝑡1)                                 (1) 

 

Where F(t) is the current frame and F(t1) is the 

previous frame. The resulting frame differences are 

then used as input to the model. The use of frame 

differences reduces the amount of redundant 

information and emphasizes the motion dynamics 

within the video, which are critical for violence 

detection [21]. 

We resize each frame to a resolution of 244x244 pixels to 

match the input requirements of the ResNet model [22]. Each 

frame was then normalized by scaling pixel values to the [0, 1] 

range. 

We evaluate the performance of our proposed approach 

using Receiver Operating Characteristic (ROC) curves and 

Area Under the ROC Curve (AUROC) metrics. “Fig. 2”  

 

 

FIGURE 1. ResNet50-LSTM Model 

3.2.     Model Architecture 

       The architecture used for this study is a ResNet50-LSTM 

model to extract spatial features from frames or frame 

differences. This is achieved using convolutional blocks, each 

consisting of a convolutional layer, a batch normalization 

layer, and a ReLU activation function [23]. These blocks can 

capture intricate spatial patterns within the input data.  

The output from the convolutional blocks is then fed into 

a max-pooling layer, which reduces the spatial dimensions of 

the data while retaining the most important features [24]. 

Following this, a flattened layer is used to convert the 

multidimensional feature maps into a one-dimensional format. 

The resulting features are then fed into an LSTM layer, 

which models the temporal dependencies between frames. 

This is critical for capturing the sequence dynamics that are 

essential for violence detection. Finally, the output from the 

LSTM layer is passed through a dense layer with a SoftMax 

activation function, producing the classification results that 

distinguish between violent and non-violent actions [25]. 

3.3.       Training and Evaluation  

            We train both models using the same hyperparameters 

and training protocol. We use a batch size of 16, a learning rate 

of 0.0001, and train for 50 epochs. The Adam optimizer is 

employed to optimize the model parameters due to its ability 

to adapt the learning rate for each parameter based on the 

magnitude of the gradient, which helps to stabilize the training 

process and improve convergence [26][27]. We evaluate the 

model’s using accuracy, ROC, The area under the receiver 

operating characteristic curve (AUROC). 

3.4.     Computational Time Measurement 

          We measure the computational time required for model 

training and testing using both approaches. We use a NVIDIA 

GeForce RTX 2060 GPU with 6 GB of DDR6 memory and an 

Intel Core i5-10400F CPU with 16 GB of RAM. 

4. Result and Discussion 

       In this section, we present the results of our experiments 

and discuss the implications of our findings. 

4.1. Training and Evaluation  

            This section shows the ROC curves for the violence 

and non-violence classes using normal frames and frame 

difference, respectively. The results indicate that the frame 

difference approach is better than the normal frame approach 

in terms of AUROC, with values of 0.9091 and 0.8892, 

respectively, for the violence class, and 0.9091 and 0.8988, 

respectively, for the non-violence class. These results suggest 

that the frame difference approach is more effective in 

distinguishing between violent and non-violent scenes, which 

is a critical requirement for violence detection systems. The 

improved performance of the frame difference approach can 

be attributed to its ability to capture more relevant information 

about the scene, such as motion and changes in the 

environment, which are crucial for violence detection. The 



 

 

frame difference approach can extract more discriminative 

features from the video frames, which enables it to better 

distinguish between violent and non-violent scenes. Fig 1.1 

shows the micro-average ROC curves for normal frames and 

frame differences. The micro-average AUROC values are 0.89 

and 0.91, respectively, further supporting the superiority of the 

frame difference approach. In addition to the AUROC metric, 

we also evaluate the accuracy of our approach. The results 

show that the accuracy remains the same for both normal 

frames and frame difference, with a value of 85%., but the 

frame difference approach can do so with a higher degree of 

confidence, as reflected in the AUROC values. [28][29].  

 
 

 

4.2. Training and Evaluation  

       In addition to performance, we also evaluate the 

computational efficiency of our approach. “Table I.” shows the 

training and testing times for both normal frames and frame 

differences. The results indicate that the frame difference 

approach requires less time for both training and testing, with 

a reduction of approximately 2.9% and 4.2%, respectively. 

This reduction in computational time is significant, as it makes 

the frame difference approach more suitable for real-time 

applications, where computational efficiency is critical [30].  

TABLE 1. Time Computation Table 

Approaches 
Training 

Time/epoch (s) 

Inference Time On Testset 

(s) 

Frame Diff. 361.4 23 

Normal Frame 372.2  24 

     The improved computational efficiency of the frame 

difference approach can be attributed to its ability to reduce the 

dimensionality of the feature space, which reduces the 

computational complexity of the approach. The frame 

difference approach can extract more relevant features from 

the video frames, which enables it to achieve better 

performance with fewer computational resources. 

4.3. Discussion 

     The results of our experiments demonstrate the 

effectiveness of the frame difference approach for violence 

detection in videos. The approach can achieve better 

performance than the normal frame approach while requiring 

less computational time. These results have significant 

implications for the development of violence detection 

systems, as they suggest that the frame difference approach is 

a more effective and efficient approach for violence detection. 

The frame difference approach is particularly well-suited for 

real-time applications, where computational efficiency is 

critical. The approach can achieve better performance than the 

normal frame approach, while requiring less computational 

time, making it more suitable for real-time applications.  

5. Conclusion 

      In this study, we investigated the effectiveness of using 

frame differences as input to a ResNet50- LSTM model for 

violence detection in videos. Our findings suggest that the 

frame difference approach is a more effective and efficient 

method for violence detection in videos. The improved 

performance of the frame difference approach can be 

attributed to its ability to capture more relevant information 

about the scene, such as motion and changes in the 

environment, which are crucial for violence detection. The 

approach is particularly well-suited for real-time applications, 



 

 

where computational efficiency is critical. Overall, our study 

demonstrates the potential of using frame differences as input 

to a ResNet50- LSTM model for violence detection in videos. 

The approach offers a promising solution for developing more 

accurate and efficient systems for detecting abnormal and 

violent behavior, including violence detection, which can have 

significant implications for various applications, such as 

surveillance, law enforcement, public safety, and security.  

6.  Future Work 

       In future work, we plan to explore the applicability of our 

approach to various datasets, experiment with different deep 

learning models and hyperparameters, and investigate the use 

of multi-head attention mechanisms and transfer learning 

techniques to further improve the performance and robustness 

of violence detection systems. 
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