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Abstract: 
Aging sewer pipelines pose a growing risk of surface 

subsidence due to hidden water leakage. We present a 

training‑free detection framework that (i) sparsifies curved edges 

by the Fast Discrete Curvelet Transform and (ii) suppresses 

camera‑induced background shift through block‑based motion 

compensation. Frame differencing followed by dynamic 

thresholding isolates leakage regions of arbitrary size and shape. 

Evaluated on 110 labeled frames (55 leak / 55 non‑leak), the 

proposed method attains Precision = 1.00, Recall = 1.00, and 

mIoU = 0.41, outperforming an improved U‑Net baseline 

(Precision = 0.59, mIoU = 0.24). These results confirm that 

combining curvelet-based edge enhancement with explicit motion 

modeling provides a robust alternative to deep-learning 

approaches for sewer-pipe inspection videos. 
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1. Introduction 

Sewer pipelines in many countries are approaching or 

exceeding their designed service life. According to [1], 

sections older than 50 years already total ≈ 30,000 km and are 

projected to reach ≈ 90,000 km within the next decade. Age-

related deterioration causes internal defects—e.g., gasket 

peeling and joint displacement (Fig. 1)—that can trigger road 

subsidence and other hazards. 

 

  
Fig. 1. Example of an abnormality occurring inside a sewer 

pipe 

 

Current inspections rely on a self-propelled robot that 

records video while traversing the pipe; human operators then 

review the footage frame by frame. Because a single session 

can last several hours, the manual process is both labor-

intensive and prone to errors. Automated image analysis 

techniques are therefore required. Water leakage is particularly 

troublesome among possible defects. It increases inflow 

during rainfall, leading to sewer overflows and backflows into 

residential areas [2]. Deep-learning approaches have been 

proposed for general sewer-defect segmentation [3]–[5], but 

they perform best on lesions with well-defined geometries, 

such as cracks and fractures. Diffuse leaks, whose appearance 

changes continuously with the flow of water, remain 

challenging (Fig. 2 and Fig. 3). In video sequences, leakage 

manifests as pronounced intensity changes between 

consecutive frames. In contrast, the pipe wall changes 

smoothly as the camera moves forward. A plausible strategy is 

therefore: 

(1) Enhance the curved edges that delineate the pipe 

geometry. 

(2) Compensate for the camera-induced background shift. 

(3) Apply frame differencing followed by adaptive 

thresholding. 

The present study realizes this strategy through two key 

components: 

(1) Fast Discrete Curvelet Transform (FDCT) to sparsify 

curved edges that dominate sewer imagery, and 

(2) Block-based motion compensation [6] to align 

successive frames and suppress background residue. 

Unlike deep networks, the proposed pipeline is training-free; 

all parameters are fixed heuristically, and no annotated data are 

needed during operation. We evaluate the method on 110 

labeled frames and show that it surpasses an improved U-Net 

baseline [3] in the precision, recall, and mean intersection-

over-union(mIoU). 

 The rest of the paper is organized as follows. Section 2 

reviews the FDCT. Section 3 details the proposed algorithm. 

Section 4 describes the experimental setup, and Section 5 

discusses quantitative and qualitative results. Section 6 

带格式的: 缩进: 首行缩进:  2 字符



 

 

concludes the paper and outlines future work. 

 

 
Fig. 2. Image of the inside of the sewage pipe where the leak 

occurred 

 

 
(a) Leakage points in Fig. 2 

 

 
(b) Fig. 2 shows the results of leak detection by applying the 

method in reference [3] 

 

Fig. 3. Leakage locations shown in Fig. 2 and corresponding 

detection results using the method described in [3]. 

2. Method for Leakage Detection 

The proposed pipeline processes each video frame through 

four stages: 

1. Edge enhancement 

2. motion compensation 

3. frame differencing with dynamic thresholding 

4. mask fusion 

2.1 Edge Enhancement via Fast Discrete Curvelet 

Transform 

Because curved edges dominate the interior of a sewer 

pipe, we adopt the Fast Discrete Curvelet Transform (FDCT) 

of Candès et al. [7]. FDCT decomposes an image into 

anisotropic atoms localized in scale, orientation, and position, 

resulting in a sparser representation of smooth contours 

compared to traditional wavelets. We use the 

“frequency‑wrapping” implementation in CurveLab [8].Given 

an RGB frame 𝐹𝑖, we convert it to grayscale 𝐺𝑖 and compute 

its curvelet coefficients C = FDCT(𝐺𝑖). Hard thresholding with 

threshold τ produces the pruned set C′ = Threshold(C, τ). The 

inverse transform then reconstructs the edge‑enhanced image 

𝑅𝑖:. 

𝑅𝑖 = 𝐹𝐷𝐶𝑇−1𝐶′ 

2.2 Background Alignment by Block-Based Motion 

Compensation 

Successive frames differ not only because of water motion but 

also because the inspection camera is moving. To suppress the 

latter, we estimate integer‑pixel motion vectors on 

non‑overlapping 𝑁𝑏  × 𝑁𝑏 blocks by minimizing the sum of 

absolute differences (SAD) between 𝑅𝑖  and 𝑅𝑖+1 . Let 𝑉𝑏 

denote the motion vector of block b. The next grayscale frame 

𝐺𝑖+1 is warped accordingly to obtain the motion‑compensated 

frame: 

𝑅′
𝑖+1(𝑝) = 𝐺𝑖+1(𝑝 − 𝑉𝑏(𝑝)) 

Where 𝑝 = (𝑥, 𝑦) denotes a pixel location. 

2.3 Frame Differencing and Dynamic Thresholding 

The raw difference image 𝐷𝑖+1  = 𝐺′𝑖+1  − 𝐺𝑖  is 

converted to its absolute form |𝐷𝑖+1|. This image is partitioned 

into 𝑁𝑦  × 𝑁𝑥  blocks, and the mean absolute difference of 

block (j, k) is denoted by 𝑑𝑖+1 (j, k). 

The global mean of these block averages is then computed as 

�̅�𝑖+1
𝑔𝑙𝑜𝑏𝑎𝑙

 = (1/(𝑁𝑦 𝑁𝑥)) 𝛴𝑗,𝑘 𝑑̅
𝑖+1(𝑗, 𝑘). Based on this value, a 

dynamic threshold is defined: 

𝑇𝑖+1 =  𝛾 +  𝛽(�̂�𝑖+1 −  𝛾) (2) 

Blocks for which �̅�𝑖+1(𝑗, 𝑘)  ≥ 𝑇𝑖+1  form the binary 

mask 𝑚𝑎𝑠𝑘3. To avoid border artifacts, the outermost blocks 

are set to zero. 

2.4 Leakage Mask Fusion 

Three complementary cues are fused using a pixel-wise logical 

AND: 

1. 𝑚𝑎𝑠𝑘1. – gray-level slicing of 𝑅𝑖+1 (levels 2–5/8) 

to suppress bright lamp reflections. 

2. 𝑚𝑎𝑠𝑘2. – hard thresholding of 𝐷𝑖+1 with d = 10; 
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3. 𝑚𝑎𝑠𝑘3 – dynamic mask from (2). 

Pixels that satisfy all three conditions are labeled as leakage. 

2.5 Parameter Setting 

Unless otherwise noted, the following constant values are 

used in all experiments: 

・Block grid for dynamic thresholding: N_y = 16, N_x = 

32. 

・Block size for motion compensation: N_b = 16. 

・Dynamic‑threshold parameters: β = 0.5, γ = 10. 

・Absolute‑difference threshold: d = 10 

These values were tuned on a small pilot set and kept 

fixed; the chosen d value provided the best separation between 

leak and non‑leak areas 

3. Experiments 

We validate the proposed method on a real inspection 

video and compare it with a retrained U-Net baseline. Dataset 

composition, annotation protocol, implementation details, and 

evaluation metrics are described below. 

3.1 Experimental Data 

We used a color video (640 × 288 px, 30 fps) supplied by 

Fukuhaku Printing Co. The sequence contains 110 

independent frames, divided into 55 leaks and 55 non-leak 

samples; Fig. 4 shows typical examples. 

 
Fig. 4. Some of the image frames of the video used  

in the experiment 

3.2 Annotation Protocol 

For each candidate frame, the preceding and succeeding 

frames were displayed side by side. Regions whose intensity 

changed noticeably and were brighter than the rear wall were 

marked as leakage (Fig. 5). Pixel-accurate binary masks were 

created in MATLAB. 

 
  (a) Original image          (b) Correct answer label 

Fig. 5. Annotation Example 

3.3 Baselines and Runtime Environment 

 Proposed 
Improved   

U-Net [3] 

OS Windows 11 Windows 11 

RAM 64 GB 64 GB 

Language

/ Lib. 

MATLAB 

R2024b+CurveLa

b 

Python3.9+PyTorc

h 

The proposed pipeline is training-free. The U-Net baseline was 

trained with a learning rate of 0.001, batch size of 5, and 50 

epochs. The data were split randomly 70 % / 30 % into training 

(76 frames) and test (34 frames); each training frame was 

augmented threefold via random horizontal flip (p = 0.5), 

brightness scaling (0.8–1.2), and contrast shift (±10). 

3.4 Evaluation Metrics 

Pixel-level segmentation performance is reported with 

Precision (Pr),Recall (Re), Intersection-over-Union (IoU), 

and the Dice coefficient (Dice = pixel-level F1-score).  In 

addition, we include frame-level Accuracy (Acc) because the 

test set contains both leak-positive and leak-negative frames.  

Let TP, FP, FN, and TN denote pixel-wise counts:: 

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑟) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

• 𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝑒) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

• 𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 

• 𝐷𝑖𝑐𝑒 =  
2∗ 𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐𝑐) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
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4. Results and Discussion 

Quantitative scores and visual examples demonstrate that 

our training-free approach detects diffuse leaks more reliably 

than an improved U-Net baseline while maintaining real-time 

speed. 

4.1 Quantitative Results 

The proposed training-free pipeline and the improved U-

Net baseline [3] were evaluated on the same 34-frame test set 

(17 leak / 17 non-leak). The confusion matrices are shown in 

Table I. 

Table I. Confusion matrix of experimental results 

Table I Confusion 

matrices (34 test frames) 

Predicted 

Leak 

Predicted non-

leak 

Proposed TP = 17 FN = 0 

 FP = 0 TN = 17 

U-Net [3] TP = 3 FN = 14 

 FP = 0 TN = 17 

From these counts, we computed the standard metrics in Table 

II. 

Table II. Detection metrics on the test set 

 Pr Re Acc mIoU Dice 

Proposed 1.00 1.00 1.00 0.41 1.00 

U-Net 

[3] 
0.59 0.18 0.59 0.24 

0.30 

mIoU is the mean intersection-over-union averaged over the 

leak class and the background; IoU ≥ 0.30 was treated as a true 

positive. The proposed method achieves perfect frame-level 

precision and recall on this dataset, whereas the U-Net baseline 

misses 82% of the leaks. 

Note that, for the proposed method, FP = 0 in our 34-frame test 

set, so Acc happens to equal Pr (1.00); however, this is not the 

case for the U-Net baseline (Pr = 0.59, Acc = 0.59 at the pixel 

level, but only 0.59/1.00 at the frame level). Therefore, both 

metrics are listed to give a complete picture of performance. 

 
(a) Original image        (b) Correct answer label 

 

 
(c) U-Net baseline [3]         (d) Proposed 

Fig. 6. Comparison of detection examples: (a) Original image, 

(b) Ground truth label, (c) U-Net baseline [3], (d) Proposed 

Fig. 6 compares a representative frame: 

U-Net [3]  detects only the bright area near the leakage 

outlet and misses the delicate splashes farther 

downstream. 

The proposed pipeline successfully highlights the 

outlet and scattered droplets thanks to the curvelet-

based edge enhancement and motion-compensated 

differencing. 

However, a few pixels remain undetected near very bright 

outlets because the local motion between frames is minimal 

and falls below the dynamic threshold. 

4.2 Error Analysis and Discussion 

False negatives (near outlets) – When water flows 

vertically, inter-frame displacement is small; the 

difference image may not exceed the global threshold 

defined by Eq. (2). Future work could incorporate sub-

pixel optical flow or adaptive block sizes. 

Absence of false positives – The AND-fusion of three 

masks (Section 2.4) effectively suppresses reflections 

and illumination noise, yielding FP = 0 in all test 

frames. 

mIoU still moderate (0.41) – Achieving perfect frame-

level classification does not necessarily ensure a high 

intersection-over-union (IoU), as minor localization 

errors can significantly impact the metric. Incorporating 

morphological refinement (e.g.CRF post-processing) 

may improve region overlaps. 

Generalisability—Because the method is training-free, 

it can be ported to other pipe diameters or camera rigs 

without retraining; nevertheless, parameters (α, β, γ, d) 

带格式的: 正文, 缩进: 首行缩进:  0.71 厘米, 段落
间距段前: 0 磅, 段后: 0 磅

设置了格式: 字体: (中文) 宋体, (中文) 简体中文(中
国大陆)

批注 [TM3]: Accuracy は削除 

批注 [TM4]: Accuracy と Precision が同じになる理由を

明記。 



 

 

may require slight tuning if lighting conditions differ 

substantially. 

Computation time – On MATLAB R2024b with a 64 

GB workstation, the pipeline processes a 640 × 288 frame 

in 0.18 seconds (single core), which is fast enough for 

near-real-time playback. 

 

5. Conclusion and Future Work 

We proposed a training-free pipeline that fuses curvelet-

based edge enhancement with block-wise motion 

compensation to detect diffuse water leakage in sewer-pipe 

inspection videos. On the 34-frame test set the method reached 

frame-level Precision = 1.00, Recall = 1.00, and Accuracy = 

1.00, and achieved a pixel-level mean IoU of 0.41, 

outperforming an improved U-Net baseline by +0.17 IoU 

while running in real time (0.18 s per frame on a standard 

CPU). Because all parameters are fixed heuristically and no 

annotated data are required, the pipeline can be deployed 

immediately in routine inspections and applied to archival 

footage.  Future work will extend the framework to multi-

class defect detection (e.g., cracks, deposits) and incorporate 

sub-pixel optical-flow alignment to reduce miss rates in frames 

with minimal motion.. 
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