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Abstract:

Crohn’s disease triggers chronic inflammation throughout
the gastrointestinal tract, with lesions often developing in the
small intestine. Capsule endoscopy (CE) provides a non-
invasive window for screening; however, each examination gen-
erates thousands of frames that physicians must manually in-
spect. We propose a training-free pipeline that couples dyadic
wavelet-transform modulus (WTM) edge enhancement with
topology-aware descriptors (persistence images; PI) and a frac-
tal descriptor (fractal dimension; FD) to discriminate Crohn’s-
specific lesions from normal mucosa. Each image is mapped to
a 1057-dimensional vector (1056 PI + 1 FD). After standard-
ization (zero-mean, unit-variance scaling) and principal com-
ponent analysis (75% cumulative variance), a two-layer multi-
layer perceptron is used for classification. On an augmented set
of 800 images (balanced normal/lesion), the proposed method
achieves 95.4% accuracy, 95.2% recall, and 96.5% specificity.
Rivaling ResNet-50 (95.6%) and VGG-16 (95.3%) while requir-
ing no pixel-level annotation and orders of magnitude fewer
parameters. These findings demonstrate that topology-aware,
handcrafted features can match those of deep networks and
may help reduce missed lesions in clinical practice.
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1. Introduction

Crohn’s disease (CD) is an inflammatory bowel disease
that can affect the entire gastrointestinal tract, with le-
sions most frequently occurring in the small intestine. Al-
though its etiology remains unclear, genetic predisposi-
tion, immune dysregulation, microbiota imbalance, and
environmental triggers are believed to interact in complex
ways. Because CD typically manifests in young adults and

follows a lifelong course, early lesion detection is critical
to prevent strictures and other severe complications [1].

Capsule endoscopy (CE) provides a non-invasive means
of visualizing the small intestine; however, a single ex-
amination can yield tens of thousands of frames that
physicians must inspect manually. Automated analysis
is, therefore, indispensable. Previous work has addressed
binary classification between normal mucosa and a single
lesion subtype e.g. circumferential alignment [2], but to
our knowledge, no study has tackled comprehensive bi-
nary classification that treats all major Crohn’s-specific
lesion morphologies collectively (Fig. 1).

We propose a training-free pipeline that (i) enhances
edge information in CE images via the dyadic wavelet-
transform modulus (WTM), (ii) encodes shape character-
istics through zero-/first-order persistent homology and
a fractal dimension, and (iii) performs classification with
a multilayer perceptron (MLP). By focusing on topologi-
cal and fractal cues that conventional deep networks may
overlook, the method captures microstructural differences
between normal and lesion tissue, achieving superior diag-
nostic accuracy while reducing physician workload.

Paper organisation. Section 2 details the WTM-based
edge-enhancement procedure. Section 3 describes the ex-
traction of persistent-homology and fractal features, while
Section 4 integrates these components into the overall clas-
sification pipeline. Section 5 reports the dataset, exper-
imental settings, and comparative results. Finally, Sec-
tion 6 concludes the paper and outlines future work.
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FIGURE 1. normal and lesion images

2 Wavelet Modulus Edge Enhancement

We begin by revisiting the dyadic wavelet transform
and introduce the wavelet-transform modulus (WTM), ex-
plaining how this edge-enhancement step preserves spatial
resolution while accentuating subtle boundaries character-
istic of Crohn’s lesions.

2.1 Dyadic Wavelet Transform

The dyadic wavelet transform (DYWT) preserves shift
invariance and yields frequency components of the same

size as the original image. Following Mallat [3], the 2-D
DYWT at decomposition level j is expressed as

Gt m ZZh Cm+ 2k, n + 271,

D7t m,n] = ZZh [1]CVm + 27k, n + 271),
(1)

Eitm, n] = ZZQ (1] C[m + 27k, n + 271],

Fitlm, n] = ZZQ 1 Cm 4+ 27k, n + 291],

where h[-] and g[-] denote the low-pass and high-pass fil-
ters, respectively. C7, DJ, EJ, and FJ correspond to
the low-frequency, horizontal, vertical, and diagonal high-
frequency components.

All convolutions in Eq. (1) employ the quadratic—spline
analysis filters of order m = 2 listed in Table 5.1 of Ref. [3].
After rescaling the tabulated values by v/2, the low-pass
filter h[n] and its quadrature-mirror high-pass counterpart
g[n] become

n | -1 0 1 2
h[n] [ 0.177 0.530 0.530 0.177
g[n] —0.707 0.707

The rescaling guarantees |[hlz = 1 and |g|2 = 1,
thereby preserving energy and yielding a fully shift-
invariant dyadic decomposition with no trainable param-
eters.

2.2 Wavelet Transform Modulus

Following Mallat [3], we define the wavelet-transform
modulus (WTM) at scale j as

WIM [m,n] = v/[Di[m,n][2 + |Ei[m,n]]2,  (2)

where D7 and E7 are the horizontal and vertical detail
coefficients in Eq. (1). The diagonal component F7 is not
used because the edge magnitude is obtained from the
gradient vector whose x- and y-components correspond to
the horizontal and vertical wavelet responses.

The resulting edge map accentuates lesion boundaries
that are otherwise subtle in raw capsule-endoscopy images.

3 Topological and Fractal Feature Extraction

This section details how persistent homology and fractal
analysis transform the WTM edge maps into a compact



FIGURE 2. Pipeline for converting a persistence diagram into
a persistence image.

yet expressive descriptor: first, zero- and first-order persis-
tence diagrams are converted to persistence images (PIs)
that encode global geometric structure, and second, a box-
counting fractal dimension (FD) augments these features
with fine-scale textural complexity.

3.1 Persistent Homology

Persistent homology (PH) [4] is employed to encode
shape information contained in the WTM edge map. A
sub-level-set filtration treats pixel intensities as scalar val-
ues and records the birth and death of topological features
as the threshold decreases. Zero-order PH captures the
evolution of connected components, whereas first-order
PH tracks the formation and disappearance of holes.

Each birth-death pair is plotted on a persistence dia-
gram (PD). Because PDs are not directly amenable to
machine-learning models, they are vectorized into persis-
tence images (PIs) [5]. Every point in the PD is weighted
and convolved with a Gaussian kernel to form a smooth
persistence surface, which is then sampled on a regular
grid(Fig. 2). In this work, both zero- and first-order
PDs are extracted, each yielding 528 PI features. Con-
sequently, a total of 1056 PI features are obtained per
image.

3.2 Fractal Dimension

Fractal dimension (FD) provides a scale-invariant index
of structural complexity. We estimate FD on the grayscale
WTM edge map by the box—counting method [6], which
is conventionally defined for binary images. Accordingly,
the edge map is first binarised via adaptive thresholding,
yielding a foreground set S C R2. For a square grid of
side length &, let N(g) denote the number of grid squares
that contain at least one foreground pixel of S. The box—
counting dimension is

FD = lim 228V (©)

=0 log(1/¢) i ®)

where m is the slope (i.e. the gradient) of the line that
best fits the log-log points (log(1/¢), log N (e)).
Implementation. We sample ¢ € {1,2,4,...,128} pix-
els, plot log N(e) versus log(1l/e), and compute m by
least-squares regression; this slope is reported as the
FD scalar. The value complements the 1056 persis-
tence-image features, forming a compact 1057-dimensional
topological-fractal descriptor for each image.

4 Classification Pipeline

Figure 3 illustrates the proposed six-stage workflow that
maps a capsule-endoscopy (CE) frame to a binary diag-
nosis (normal vs. Crohn’s lesion comprising longitudinal
alignment /ulcer, circumferential alignment, and cobble-
stone appearance).

1. Pre-processing: Each RGB frame is converted to
grayscale and resized to 256 x 256 px for descriptor
consistency.

2. Edge enhancement: The level-3 dyadic wavelet-
transform modulus (WTM) defined in Eq. (2) is ap-
plied, producing an edge map that accentuates mu-
cosal boundaries.

3. Topological-fractal feature extraction:

e Zero- and first-order persistence diagrams are
computed on the WTM edge map and rasterised
to 32 x 32 persistence images (PIs); keeping the
upper-triangular half yields 2 x 528 = 1056 PI
features.

o A single fractal-dimension (FD) value is esti-
mated on the binarised edge map using the box-
counting method.

Concatenating the PI and FD outputs forms a 1057-
dimensional descriptor x for each frame.

4. Standardisation: Each feature is scaled to zero mean
and unit variance on the training set.

5. Dimensionality reduction: Principal-component anal-
ysis (PCA) retains the first 29 components, explaining
75 % of the cumulative variance.

6. Classification: The reduced features are fed to a two-
layer multilayer perceptron (MLP; 29— 64— 32— 2)
with ReLU activation and softmax output to predict
normal or lesion.
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FIGURE 3. Overview of the proposed classification pipeline.

5 Experiments and Results

The Proposed Method was conducted using Google Co-
lab (CPU) with Python 3.11 and HomCloud 4.7.0 [7]. Ad-
ditionally, ResNet-50 and VGG-16 were implemented on
a workstation equipped with an Intel Core i5-12500 CPU
and 16 GB RAM using MATLAB R2023b.

5.1 Dataset

The raw dataset consists of 605 small-bowel capsule-
endoscopy (CE) images with a spatial resolution of 400 x
400 px: 400 normal frames and 205 Crohn’s-lesion frames.
Lesions are further categorised into longitudinal alignment
(19 images), longitudinal ulcer (34), circumferential align-
ment (101) and cobblestone appearance (51).

To mitigate class imbalance and enhance robustness,
only lesion images were augmented using 90° rotations
and horizontal/vertical flips, yielding exactly 400 lesion
samples (95, 102, 101 and 102 images in the respective
sub-categories) and a balanced total of 800 images (400
normal + 400 lesion).

5.2 Handcrafted Feature Extraction and Classifier
Training

A patient-wise 70 / 30 split prevents identity leakage:
560 images for training, 240 for testing.

Feature extraction. For each frame, the dyadic wavelet-
transform modulus computed at level 3 (WTM-3) yields
an edge-enhanced grayscale map. Zero- and first-order
persistence diagrams are then computed on WTM-3 via
a lower-star filtration within the birth-death window
(=10, 15). Each diagram is rasterized to a 32 x 32 persis-
tence image (PI) with a Gaussian bandwidth of o = 0.002,
after which only the upper-triangular part of the grid is
retained, resulting in 528 informative bins per diagram.
Stacking the 0D and 1D PIs yields 2 x 528 = 1,056 topo-
logical features. A box-counting fractal dimension (FD)
scalar is appended, forming the final descriptor x € R1957,

Pre-processing and dimensionality reduction. All 1057
features are standardized (zero mean, unit variance) on
the training set, followed by principal component analysis
(PCA); the first 29 components (75 % cumulative vari-
ance) are retained.

Classifier. A two-layer multilayer perceptron (MLP;
29— 64 — 32— 2) with ReLU activation and softmax out-
put is trained for 50 epochs (Adam, learning rate 0.001,
batch size 32, Ly weight decay 0.05). Early stopping mon-
itors validation loss with patience of five epochs.

5.3 Baseline CNNs

For comparison, ResNet-50 and VGG-16 pre-trained on
ImageNet [8] are fine-tuned. Both models employ stochas-
tic gradient descent (learning rate 10~%, batch size 16) for
five epochs, with validation every ten iterations to curb
over-fitting.

5.4 Evaluation Metrics

Model performance was quantified on the held-out
test set using three classical medical-imaging indices—
accuracy, recall (sensitivity) and specificity. Let TP, TN,
FP and FN denote the numbers of true positives, true
negatives, false positives and false negatives, respectively.
The metrics are defined as

A TP + TN (4)
T =
A = TP Y TN + FP + FN’
TP
Recall = TP+ PN’ (5)
TN
ificity = ~——— .
Specificity TN + TP (6)

Accuracy measures overall correctness, whereas recall
(sensitivity) gauges the ability to detect lesions; specificity
evaluates how well normal tissue is preserved from false
alarms—critical for reducing unnecessary follow-up proce-
dures.

5.5 Quantitative Results

Table 1 shows that the topology-aware pipeline achieves
a comparable overall accuracy to VGG-16 (95.4 %),
while maintaining a superior balance between lesion re-
call (95.2 %) and normal-image specificity (96.5 %).
ResNet-50 achieves the highest recall but at the expense
of markedly lower specificity, indicating a tendency to



TABLE 1. Performance comparison between the proposed
method and CNN baselines.

Method Accuracy (%) Recall (%) Specificity (%)
Proposed (WTM-3 + PI + FD) 95.4 95.2 96.5
ResNet-50 93.3 96.7 90.0
VGG-16 95.4 91.7 99.2
TABLE 2. Ablation study showing the contribution of each

handcrafted component.

Method Accuracy (%) Recall (%) Specificity (%)
WTM-3 + PI + FD 95.4 95.2 96.5
WTM-3 + PI 94.6 95.2 93.9
WTM-3 + FD 47.9 0.0 100
PI + FD 59.2 68.0 49.6
PI 62.5 80.0 43.5
FD 52.5 33.6 73.0

overdetect lesions. The handcrafted WTM-3+PI+FD
descriptor, therefore, provides competitive performance
without large-scale annotated data, underscoring its suit-
ability for clinical decision support.

The six-way ablation in Table 2 elucidates the contri-
bution of each handcrafted component.

e WTM-3 + PI 4+ FD (full model) obtains the best
balance: 95.4% accuracy, 95.2% recall and 96.5%
specificity.

e WTM-3 + PI (-FD) drops accuracy by only 0.8 per-
centage points (95.4 % — 94.6 %) and lowers speci-
ficity (96.5 — 93.9), indicating that the FD scalar
mainly sharpens normal-tissue discrimination.

o WTM-3 4+ FD (—PI) collapses to 47.9 % accuracy and
0% recall, confirming that PI features are indispens-
able for lesion detection.

e PI + FD (-WTM) attains 59.2% accuracy: with-
out WTM edge enhancement, both recall and speci-
ficity degrade, demonstrating that WTM concen-
trates topological cues along mucosal boundaries.

e PI only improves over FD only but still lags far behind
the full model (62.5% vs. 95.4%), showing that PI
captures lesion geometry yet misses textural detail.

e FD only yields the lowest recall (33.6 %) and a mod-
est specificity (73.0 %), revealing that fractal texture
alone cannot separate lesions from normal mucosa.

In summary, PI features provide the core discrimina-
tive power, WTM delivers boundary-focussed input that
maximises PI efficacy, and the single FD scalar fine-tunes
specificity. Their combination recreates state-of-the-art
accuracy without deep-network fine-tuning, validating the
complementary nature of wavelet, topological and fractal
information.

6 Conclusion

We proposed a training-free pipeline that fuses dyadic
wavelet-transform modulus (WTM) edge enhancement
with topology-aware persistence images (PI) and a box-
counting fractal-dimension (FD) scalar for binary classifi-
cation of capsule-endoscopy frames. On a balanced 800-
image dataset the complete WIM-3 + PI 4+ FD descrip-
tor achieved 95.4 % accuracy, 95.2 % recall, and 96.5 %
specificity—matching VGG-16 in overall accuracy while
surpassing ResNet-50 in specificity, all without pixel-level
annotation or network fine-tuning.

A six-way ablation revealed the complementary roles of
the handcrafted components: WTM focuses topology on
mucosal boundaries, PI supplies the essential geometric
signal, and the FD scalar fine-tunes normal-tissue speci-
ficity. Removing FD reduced accuracy by only 0.8 per-
centage points, whereas removing PI collapsed recall to
zero, underscoring the indispensability of topology and the
added value of fractal texture.

Future work will extend the framework to multi-class
lesion sub-typing.
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