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Abstract: 
Segmentation of pulmonary nodules in CT scans is critical 

for early diagnosis and treatment of lung diseases. Traditional 

models like U-Net often face challenges with small nodule sizes, 

and noisy data. To address these limitations, we propose CAAF-

ResUnet (Context-Aware Adaptive Attention Fu-sion ResUnet), 

which combines Channel Attention and Position Attention using 

an Adaptive Attention Fusion (AAF) mechanism, controlled by 

an Adaptive Attention Controller (AAC). Our model achieves 

commendable performance on the LUNA16 and LUNA-Noise 

datasets, with Dice Scores of 89.44% and 88.55%, respectively. 

These results surpass existing methods, demonstrating the 

model’s ability to prioritize meaningful features and handle noisy 

inputs effectively. CAAF-ResUnet provides a robust solution for 

nodule segmentation in challenging scenarios, paving the way for 

improved diagnostic accuracy in clinical settings. This work 

emphasizes the importance of adaptive attention mechanisms for 

medical image segmentation and highlights opportunities for 

future improvements. 
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1. Introduction 

Lung cancer is a predominant cause of global death, 

frequently diagnosed at ad-vanced stages, which markedly 

diminishes therapeutic efficacy [1]. Early screening with chest 

CT can detect atypical lung nodules, enabling prompt 

diagnosis and better patient outcomes. Accurate segmentation 

of lung nodules aids risk assessment and therapy planning. 

However, small size, unclear margins, and complex 

surrounding structures make segmentation challenging. 

Traditional methods like U-Net and its variants have 

significantly advanced medical image segmentation. However, 

models using multiple attention mechanisms have not fully 

optimized the assessment of each mechanism’s impact based 

on image context. This limitation is especially evident in 

segmenting tiny nodules, handling ambiguous margins, or 

dealing with noisy conditions, leading to reduced precision. To 

tackle these issues, we offer CAAF-ResUNet (Context-Aware 

Adaptive Atten-tion Fusion U-Net), a model derived from the 

Res-UNet++ architecture, particularly engineered for the 

segmentation of pulmonary nodules in CT images. CAAF-

ResUNet prominently features the adaptable incorporation of 

two primary attention mechanisms, channel Attention and 

Position Attention, through Adaptive Attention Fusion (AAF), 

regulated by an Adaptive Attention Controller (AAC). This 

system optimally balances key features and adapts to varying 

contextual requirements of input images. Key contributions of 

this study include: (1) AAF and AAC integration: An adaptive 

weighting method dynamically balances Channel and Position 

Attention, improving segmentation efficiency. (2) Improved 

segmentation performance: CAAF-ResUNet achieves a Dice 

Score of 89.44% on the LUNA16 dataset, outperforming a 

model without AAC (87.67%), demonstrating the 

effectiveness of adaptive weighting. (3) Robustness to noise: 

The model maintains stable performance on a Gaussian noise-

augmented LUNA16 dataset, proving its resilience in real-

world noisy conditions. 
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2. Literature review 

2.1. Initial Phase: Models Derived from U-Net 

U-Net (Ronneberger et al., 2015) [2] established the basis 

for medical picture seg-mentation with its symmetric encoder-

decoder design and skip connections, facili-tating the 

acquisition of multi-scale features. Subsequently, U-Net++ 

(Zhou et al., 2019) [3] augmented the model by include layered 

skip connections, hence enhanc-ing multi-scale representation. 

Res-UNet (Zhang et al., 2018) [4] included residual blocks to 

mitigate gradient vanishing problems during training. 

2.2. Evolution Phase: Advancements with Attention 

Mechanisms 

The advent of attention mechanisms marked a significant 

advancement in medical image segmentation, addressing the 

limitations of U-Net in capturing complex spatial and channel 

relationships. Attention U-Net [5] introduced a method to 

dynamically emphasize essential image regions, significantly 

improving segmentation, particularly in areas with subtle 

boundaries or low contrast. ResUNet++ [6] further built on this 

by incorporating Squeeze-and-Excitation (SE) blocks, refining 

inter-channel dependencies. By enhancing relevant feature 

channels and suppressing redundant ones, it proved effective 

in segmenting small and complex structures, such as lung 

nodules in CT images. Later advancements included Dual 

Attention Network (DANet) [7], which combined Channel 

Attention and Position Attention, improving the ability to 

capture both inter-channel and spatial interactions, thus 

enhancing segmentation of intricate anatomical structures. 

AWEU-Net [8] expanded this approach with adaptive 

weighting algorithms, dynamically balancing feature 

contributions across encoder-decoder layers, demonstrating 

strong performance on noisy datasets and challenging 

conditions. 

2.3. Present Phase: Transformer-Driven Models 

The advent of Transformer-based models has established 

a novel paradigm for med-ical picture segmentation. 

TransUNet [9] integrates Transformer layers with the U-Net 

framework, facilitating the acquisition of long-range 

relationships in data. SwinUNet [10] utilises the Swin 

Transformer to acquire multi-scale characteristics. Although 

these models demonstrate superior performance on extensive 

datasets, they need considerable computing resources and 

ample training data. 

2.4. Research gaps 

While attention-based segmentation has progressed, 

integrating multiple attention types dynamically remains 

challenging. Most existing methods apply static attention, 

lacking input adaptability. Transformer-based models, though 

powerful, are often impractical in clinical settings due to high 

computational demands. Thus, there is a need for adaptive 

attention coordination that balances performance and 

efficiency, especially under limited or noisy data conditions. 

3. Method 

3.1. Overview of Context-Aware Adaptive Attention Fusion 

ResUNet (CAAF-ResUnet) 

CAAF-ResUNet (Context-Aware Adaptive Attention 

Fusion ResUNet) is a model explicitly engineered for lung 

nodule segmentation in CT images, founded on the Res-

Unet++ architecture [6]. This model incorporates two attention 

mechanisms—Channel Attention and Position Attention—

alongside an adaptive weighting mecha-nism, facilitating the 

prioritizing of essential aspects according to the input image's 

context. The CAAF-UNet design consists of three primary 

stages: Encoder, Bridge, and Decoder (see Figure 1) 

 

FIGURE 1. Comprehensive architecture of the CAAF-ResUnet model. 

 

 The encoder enhances CT feature extraction using 

Residual Convolutional Blocks, Batch Normalization, 

and ReLU for stable training and minimal information 

loss. Residual connections preserve key features, while 

the hierarchical structure captures local textures 

(64×64×32) and global context (8×8×256). A central 



 

 

component, Adaptive Attention Fusion (AAF), adaptively 

balances Channel and Position Attention via the Adaptive 

Attention Controller (AAC), which adjusts weights based 

on image context.   

 The Bridge leverages Atrous Spatial Pyramid Pooling 

(ASPP) to extract multi-scale features between the 

encoder and decoder. By applying convolutions with 

dilation rates of 1, 6, 12, and 18, along with global 

average pooling, ASPP captures both local details and 

global context. A 1×1 convolution refines the output to 

8×8×256, maintaining spatial dimensions. 

 The decoder merges bridge and encoder features at each 

stage, enhanced by AAF, and progressively upsamples to 

64×64×32. A final 1×1 convolution followed by Sigmoid 

produces the segmentation map with values in [0, 1]. 

3.2. Channel Attention module 

Considering the input 𝑋 ∈ ℝ𝐵×𝐶×𝐻×𝑊 , Channel 

Attention initially converts each spatial channel of 𝑋 into 

distinct feature vectors 𝐹𝑎
𝑐  of size 𝐻×�� by flattening the 

spatial dimensions. The feature vectors are subsequently 

aggregated along the channel dimension to create a feature 

matrix 𝐹𝑎. 
 Fa = reshape(X,(B,C,HxW)) (1) 
The attention correlation matrix 𝐴 among channels is 
calculated as the matrix product of 𝐹𝑎  and its transposed 
variant 𝐹𝑎

𝑇: 
 𝐴 = 𝐹𝑎. 𝐹𝑎

𝑇 (2) 

To minimize dominating channels, the attention matrix 𝐴 

is changed by deleting the largest value in each row and 

normalizing using the softmax function to assure weights in 

each row equal to 1: 
 𝐴𝑛𝑜𝑟𝑚 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(max(𝐴,−1) − 𝐴,−1) (3) 

Applying the attention matrix 𝐴𝑛𝑜𝑟𝑚 on 𝐹𝑎 to generate 

the focused feature� 𝐹𝑒, which is then transformed to its spatial 

dimensions: 
 𝐹𝑒 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐴𝑛𝑜𝑟𝑚. 𝐹𝑎, (𝐵, 𝐶, 𝐻,�)) (4) 

Ultimately, the concentrated feature 𝐹𝑒 is integrated with 

the original input 𝑋 via the learnt parameter 𝛽, which 

modulates the impact of the attention mechanism: 
 𝐹𝑜𝑢𝑡 = 𝛽. 𝐹𝑒 + 𝑋 (5) 

3.3. Position Attention module 

Position Attention is intended to improve the spatial 

connections among pixels, allowing the model to precisely 

discern essential features such as borders and intricate areas 

within the image. The input 𝑋 ∈ ℝ𝐵×𝐶×𝐻×𝑊 is downsampled 

by max pooling with an 8×8 kernel size, emphasising essential 

characteristics and minimising computational expenses. 

X is first transformed by two 11 convolutions into 

spatial feature vectors Fb and Fc, representing two 

complementary views. Fb is reshaped to [B,HW,C’], 

capturing position-wise relationships, while Fc is reshaped to 

[B,C’,HW], preserving channel-wise details. These 

representations are fed into a correlation matrix, where each 

entry (i, j) reflects the spatial similarity between pixels i and j. 

The resulting matrix, normalized by Softmax, highlights 

strong spatial dependencies and suppresses weak connections, 

enabling the model to enhance structure-aware learning and 

boundary discrimination. 
 𝐴𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�𝐹𝑏 . 𝐹𝑐) () 

The spatial attention feature 𝐹𝑒 is calculated via 
 𝐹𝑒 = 𝐶𝑜𝑛𝑣(𝑋). 𝐴𝑠

𝑇 (7) 
Finally, Fe is interpolated back to the original dimensions 

of X and combined with X utilising the tuning parameter α to 

get the final output: 
 𝐹𝑜𝑢𝑡 = 𝛼. 𝐹𝑒 + 𝑋 (8) 

3.4. The Adaptive Attention Controller (AAC) 

The Adaptive Attention Controller in CAAF-ResUNet is 

essential for harmonizing Channel Attention and Position 

Attention, allowing the model to dynamically modify weights 

according on the input image's context. The procedure starts 

with the condensation of information from the input image 

𝑋 ∈ ℝ𝐵×𝐶×𝐻×𝑊 . Employing Global Average Pooling 

generates a global feature vector 𝑔 ∈ ℝ𝐵×𝐶, which captures 

the comprehensive channel information. The vector 𝑔  is 

further processed through two fully connected layers to get the 

weights 𝑤1 and 𝑤2, which signify the priorities of Position 

Attention and Channel Attention, respectively. This procedure 

is mathematically expressed as: 
 𝑧 = 𝑅𝑒𝐿𝑈(�1𝑔 +�𝑏1), (9) 
 𝑤 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(�2 + 𝑏2) () 

Here, �1 and �2 denote the weight matrices, whereas 

𝑏1 and 𝑏2 represent the bias vectors of the fully connected 

layers. The softmax function normalizes the weights 𝑤1 and 

𝑤2 , ensuring that 𝑤1  + 𝑤2  = 1, which represents the 

distribution of attention priorities. The weights are 

subsequently utilized to amalgamate the characteristics from 

Position Attention (𝐹 position) and Channel Attention (𝐹 

channel) as follows: 
 𝐹𝑒𝑛𝑐𝑜𝑑𝑒𝑑 =�𝑤1 × 𝐹𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 +�𝑤2 × 𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙 � (11) 

The AAC dynamically adjusts attention weights to suit 

each image’s context, emphasizing spatial cues (w₁) for small 

nodules or unclear borders, and channel cues (w₂) when 

spectral features dominate. This adaptability enhances 

segmentation accuracy and generalization. As a core of CAAF-

ResUNet, AAC ensures an effective balance between 

flexibility and performance. 



 

 

3.5. Adaptive Attention Fusion (AAF) 

Adaptive Attention Fusion (AAF) combines Position and 

Channel Attention using adaptive weights 𝑤₁ and 𝑤₂ 

generated by the Attention Controller (AAC). Given input X 

∈ [B, C, H, W], both attentions are applied separately to 

produce Position Attention (P) and Channel Attention(C). 

These outputs are then fused using the weights, which are 

broadcasted to match spatial dimensions, allowing AAF to 

adaptively emphasize spatial or channel features based on 

image context. 
 𝐹𝑓𝑢𝑠𝑒𝑑 =�𝑤1 × 𝑃 +�𝑤2 × C� () 

The fused tensor Ffused is refined by a 3×3 convolutional, 

producing an optimized feature map that combines spatial and 

channel information. AAF enables effective modulation of 

attention, helping the model capture both local details and 

global context. 

4. Experimental Environment 

4.1. Dataset 

This study uses two datasets derived from LUNA16 [11] 

for pulmonary nodule segmentation. The original LUNA16 

includes 1,186 annotated nodules from 888 CT scans. LUNA-

Noise is generated by adding Gaussian noise (mean = 0, 

variance = 0.001) to simulate real-world conditions and assess 

model robustness. Using nodule center coordinates, 64×64 

patches were extracted to ensure full coverage. Both datasets 

were identically split into 9,800 training and 1,200 testing 

patches for consistent evaluation across clean and noisy data. 

 
 (a) (b) 

FIGURE 2. Illustration of Pulmonary Nodule Patch Generation. (a) Nodule 

center highlighted by the yellow bounding box based on the annotation file. 

(b) Generated example patches (orange, blue, red bounding boxes) 

4.2. Model Implementation 

Models were trained in PyTorch on an NVIDIA A100 

using AdamW (lr=0.0001, weight decay=0.01). A StepLR 

scheduler reduced the learning rate by 0.1 every 30 epochs, 

with a lower bound of 1×10−6 to prevent freezing. The loss 

combined BCE and Dice, with batch size 8 and 100 training 

epochs. 

4.3. Evaluation Metrics 

This study evaluates lung nodule segmentation using 

Dice, IoU, Sensitivity, Specificity, and Miss Rate, all derived 

from the confusion matrix. TP and TN indicate correct 

segmentation of nodule and non-nodule pixels, while FP and 

FN reflect over- and under-segmentation. Together, these 

metrics provide a comprehensive view of model accuracy and 

error characteristics. 

 𝐷𝑖𝑐𝑒 = �
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𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 () 
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 () 

5. Experimental Results 

5.1. Ablation Study: Evaluating the Effectiveness of 

Adaptive Attention Integration 

This section outlines an ablation research designed to 

thoroughly assess the effects of substituting and incorporating 

different attention methods into the basic ResUnet++ 

architecture. To systematically evaluate the impact of attention 

processes, we incrementally adjust the model in Table 1: 

TABLE 1. Configuration of ablation study models 

Model Description 

Position+ResUnet Replacing the SEBlock in ResUnet++ with Position 
Attention 

Channel+ResUnet Replacing the SEBlock with Channel Attention 

Dual-ResUnet Integrating both Channel and Position Attention 

without using AAC for adaptive weighting. 

CAAF-ResUnet 

Extending the Dual-ResUnet by introducing the 

Adaptive Attention Controller (AAC) to dynamically 
fuse channel and position Attention. 

5.2. Performance on LUNA Dataset 

Table 2 presents ablation results on the LUNA dataset. 

The baseline ResUnet++ achieves Dice 85.69% and IoU 

75.63%. Replacing SEBlocks with Position or Channel 

Attention yields similar performance, with Channel + ResUnet 

showing slightly higher Specificity (99.46%) but both models 

share a high Miss Rate (~14.55%). Dual-ResUnet, combining 

both attentions without weighting, improves Dice to 87.67% 

and reduces Miss Rate to 13.13%. CAAF-ResUnet, using 

dynamic attention via AAC, achieves the best performance 

(Dice 89.44%, IoU 81.23%) with a lower Miss Rate of 10.16%. 

The learned weights (w₁ = 0.29, w₂ = 0.71) indicate a stronger 



 

 

reliance on Channel Attention in clean CT data. 

TABLE 2. Ablation study model performance on Luna dataset 

Model Dice IoU Sensitivity Specificity 
Miss 

Rate 

ResUnet 

++(Baseline) 
85.69% 75.63% 86.36% 99.35% 14.86% 

Position + 
ResUnet 

85.19% 74.75% 85.45% 99.34% 14.55% 

Channel + 

ResUnet 
85.41% 75.15% 85.08% 99.46% 14.92% 

Dual-

ResUnet 
87.67% 78.45% 86.87% 99.51% 13.13% 

CAAF-
ResUnet 

89.44% 81.23% 89.84% 99.56% 10.16% 

5.3. Performance on LUNA-Noise Dataset 

On the LUNA-Noise dataset, the baseline ResUnet++ 

shows reduced robustness, with Dice and IoU dropping to 

85.30% and 75.03%, respectively. Position + ResUnet and 

Channel + ResUnet perform similarly but suffer from higher 

Miss Rates, notably 15.01% for Channel + ResUnet, indicating 

difficulty under noisy conditions. Dual-ResUnet improves 

resilience with Dice 87.37%, IoU 77.99%, and a lower Miss 

Rate of 11.46%, confirming the benefit of combining both 

attention types. CAAF-ResUnet outperforms all, achieving 

Dice 88.55%, IoU 79.80%, and the lowest Miss Rate (10.19%), 

with adaptive weighting favouring position attention (w₁ = 

0.37), highlighting its importance in handling spatial noise. 

TABLE 3. Ablation study model performance on Luna-Noise dataset 

Model Dice IoU Sensitivity Specificity 
Miss 

Rate 

ResUnet 

++(Baseline) 

85.30% 75.03% 85.13% 99.39% 14.87% 

Position + 

ResUnet 

85.26% 74.83% 85.38% 99.32% 14.62% 

Channel + 
ResUnet 

85.43% 75.15% 84.99% 99.44% 15.01% 

Dual-

ResUnet 

87.37% 77.99% 86.45% 99.51% 11.46% 

CAAF-
ResUnet 

88.55% 79.80% 87.82% 99.52% 10.19% 

5.4. Comparative Analysis with Existing Models 

Table 4 provides a comparative assessment of 

segmentation efficacy between CAAF-ResUnet and other 

leading algorithms on the LIDC and LUNA16 datasets. Our 

suggested CAAF-ResUnet attains a Dice Similarity 

Coefficient (DSC) of 89.44% on the LUNA16 dataset, 

exceeding all other models by a considerable margin. In the 

LUNA16 evaluation, Keetha et al. [13] and Sekhara et al. [16] 

attained a Dice Similarity Coefficient (DSC) of 82.82%, 

demonstrating superior performance relative to other 

benchmarks. Nevertheless, these models are deficient in the 

adaptive fusion capabilities shown in CAAF-ResUnet, 

constraining their capacity to manage subtle contextual factors. 

CAAF-ResUnet's efficacy is attributed to its Adaptive 

Attention Fusion (AAF) mechanism, which amalgamates 

Channel and Position Attention with dynamic context-aware 

weighting through the AAC module. This architecture 

improves segmentation efficacy, especially under noisy or 

difficult conditions. 

TABLE 4. Comparison of lung nodule segmentation models 

Authors Model DSC 

Tong et al., (2018)[12] Unet 82.05% 

Keetha et al., (2020) [13] U-Det 82.82% 

Wu et al., (2021) [14] Dual-branch network 83.16% 

Maqsood et al., (2021) [15] DA-Net 81.00% 

Sekhara et al., (2023) [16] Bidirectional feature network 82.82% 

Our model CAAF-ResUnet 89.44% 

The Figure 3 presents many cases demonstrating both 

accurately segmented nodules and occurrences with slight 

segmentation errors. Notwithstanding these variations, the 

models effectively identify the locations of pulmonary nodules. 

 

 
FIGURE 3. Visual results of pulmonary nodule segmentation. From left 

to right: input image, ground truth, model output, and overlay of TP (green), 

FP (red), FN (yellow), and TN (blue). 

5. Conclusions 

This paper presents CAAF-ResUnet, an innovative 

segmentation model designed for the identification of 

pulmonary nodules in CT images. Our approach, based on the 

ResUnet++ framework, incorporates Channel Attention and 

Position Attention via the Adaptive Attention Fusion (AAF) 

mechanism, governed by the Adaptive Atten-tion Controller 



 

 

(AAC). This adaptive weighting method allows the model to 

priori-tise pertinent elements dynamically, depending on the 

input image's context, so overcoming the constraints of static 

attention processes in current models. 

Experimental findings on the LUNA16 and LUNA-Noise 

datasets illustrate the robustness of CAAF-ResUnet, attaining 

Dice Scores of 89.44% and 88.55%, respectively, and 

markedly surpassing baseline models and various 

methodologies. Fur-thermore, the model's capacity to 

equilibrate false positives and false negatives, as evidenced by 

its exceptional IoU, Sensitivity, Specificity, and Miss Rate, 

under-scores its efficacy in managing difficult situations. 

Future research will concentrate on the extension of 

CAAF-ResUnet to other medical imaging tasks, the 

optimisation of its computational efficiency for deploy-ment 

in resource-constrained environments, and the investigation of 

hybrid attention mechanisms to achieve additional 

performance improvements. The objective of this research is 

to provide a scalable and robust solution for pulmonary nodule 

segmenta-tion, thereby enabling early diagnosis and enhanced 

treatment outcomes in clinical practice. 
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