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Abstract: 
With the rapid advancement of deep learning-based 

object detection techniques, this study identifies critical 

limitations in the YOLOv11 framework regarding small 

object detection, multi-scale target handling, and feature 

representation in complex scenes. To address these challenges, 

we propose MRS-YOLO, an enhanced framework 

incorporating two key innovations: (1) a Receptive Field 

Enhanced Spatial Convolution module that combines dynamic 

weight allocation with multi-branch dilated convolutions 

(1×1/3×3/5×5) and spatial attention mechanisms, and (2) a 

Multi-Scale Feature Fusion module featuring triple-path 

feature extraction (local/medium/long-range) coordinated with 

dual-attention mechanisms. Evaluated on the HELMET 

dataset, MRS-YOLO achieves a 64.2% mAP50, 

outperforming YOLOv5n (61.7%), YOLOv8n (62.5%), and 

YOLOv11n (63.3%). The expanded convolutional modules 

and optimized detection heads significantly improve 

contextual feature extraction while maintaining computational 

efficiency. Comparative experiments demonstrate the 

framework's superior capability in preserving spatial 

information during down sampling and aligning 

cross-resolution features, particularly for industrial 

applications like power system inspection and safety 

monitoring. 
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1. Introduction 

Object detection, as one of the core tasks in the field of 

computer vision, aims to accurately localize and identify 

objects of interest in images or videos. With the rapid 

advancement of deep learning technologies, object 

detection algorithms have achieved significant 

breakthroughs in both accuracy and efficiency, finding 

widespread applications in autonomous driving, intelligent 

surveillance, industrial quality inspection, medical image 

analysis, and other domains. 

Traditional object detection methods are primarily 

divided into two-stage detectors (e.g., the R-CNN series) 

and single-stage detectors (e.g., YOLO, SSD). Two-stage 

methods achieve high precision through region proposal 

and classification-regression mechanisms, while 

single-stage methods, due to their end-to-end architecture, 

are better suited for real-time scenarios. Examples include 

the detection of safety helmets and equipment during power 

system operations, as well as various real-time task 

applications. 

Among single-stage detectors, the YOLO (You Only 

Look Once) series algorithms have become a research 

hotspot in both industrial and academic communities due to 

their exceptional speed-accuracy balance. 

Object detection algorithms have achieved remarkable 

progress in recent years, with the YOLO series attracting 

significant attention for its efficient real-time detection 

capabilities. From YOLOv1, which first transformed the 

detection task into a single grid prediction, to YOLOv3 

introducing multi-scale feature fusion and the Darknet-53 

backbone network, and further to YOLOv5 improving 

training efficiency through adaptive anchor boxes and 

Mosaic data augmentation, each iteration has sought a 

better trade-off between speed and accuracy [1-3]. The 

latest YOLOv11 further optimizes performance by 

incorporating dynamic feature selection mechanisms and 

mixed-precision training, enhancing small object detection 

while maintaining real-time processing. 

The evolution of this series reflects a technological 

progression from single-scale prediction to multi-scale 

fusion, and from fixed parameters to adaptive learning, 

providing continuously optimized solutions for real-time 

object detection. However, challenges such as small object 

detection in complex scenes, occluded object recognition, 

and computational resource constraints remain critical 

issues to be addressed. 

Building upon the YOLOv11 framework - the latest 



 

 

evolution in the YOLO series that incorporates advanced 

designs including C3K2 blocks, SPPF structures and 

C2PSA attention mechanisms - this study proposes targeted 

improvements to address critical limitations in complex 

scenarios. While maintaining the conventional three-stage 

architecture (Backbone for multi-scale feature extraction, 

Neck for cross-layer feature fusion and enhancement, and 

Head for object localization/classification), we identify 

three key challenges: (1) inadequate preservation of 

multi-scale features due to spatial information loss during 

downsampling, (2) difficulties in cross-resolution feature 

alignment stemming from inter-scale feature misalignment 

with traditional methods, and (3) constrained small object 

detection accuracy resulting from insufficient receptive 

field coverage in existing modules. These limitations 

significantly impact performance in real-world applications 

involving diverse object scales and complex backgrounds. 

To address these challenges, this paper proposes two 

key innovations: (1) a Receptive Field Enhanced Spatial 

Convolution (RSConv) module featuring dynamic weight 

allocation through multi-branch dilated convolution 

(parallel 1×1/3×3/5×5 paths) and spatial attention fusion 

(7×7 convolution with sigmoid activation); and (2) a 

Multi-Scale Feature Fusion Enhancement (MSFFusion) 

module with triple-path extraction (1×1 local, 3×3 

medium-range, dilated 3×3 long-range convolutions) and 

dual-attention coordination (channel & spatial attention). 

The proposed RSConv module enhances multi-scale 

feature preservation capabilities, while the MSFFusion 

module effectively addresses cross-resolution feature 

alignment issues, collectively achieving significant 

improvements in small object detection performance under 

complex scenarios. This integrated approach provides a 

more robust solution for industrial inspection, security 

surveillance, and related applications. 

2. Related Works 

Object detection, as a core task in computer vision, has 

research spanning multiple aspects, with detection 

technologies now penetrating various interdisciplinary 

fields. 

As a classic object detection algorithm, YOLO 

technology has undergone multiple generations of updates 

and finds wide applications across domains: industrial 

automation for product defect detection and assembly line 

sorting; autonomous driving for real-time vehicle and 

pedestrian detection to ensure navigation safety; security 

surveillance systems using face and behavior recognition to 

enhance warning capabilities; medical image analysis for 

cell counting and lesion localization (e.g., tumor marking in 

CT scans); smart agriculture for crop pest monitoring and 

fruit ripeness assessment; retail sector utilizing shelf 

product detection to optimize inventory management; drone 

inspections for power line fault identification and 

photovoltaic panel defect localization; aerospace supporting 

ground object classification in satellite imagery (e.g., 

building and road extraction); and military defense for 

battlefield target tracking and threat assessment in 

cutting-edge scenarios [4-9].  

Numerous YOLO algorithm improvement studies exist 

for these domains, such as: [10] proposed an efficient 

coarse object locating method based on a saliency 

mechanism. The method could avoid an exhaustive search 

across the image and generate a small number of bounding 

boxes, which can locate the object quickly and precisely.[11] 

proposed the MMI-Det which is a multi-modal fusion 

method for visible and infrared object detection. The 

method can provide a good combination of complementary 

information in the visible-infrared modalities and output 

accurate and robust object information. [12] proposed an 

automatic dataset creation method. This method first 

extracts objects from the source images and then combines 

them as synthetic images. [13] proposed a novel RSI 

anchor-free object detection framework that consists of two 

key components: a cross-channel feature pyramid network 

(CFPN) and multiple foreground- attentive detection heads. 

[14] proposed a deblurring dictionary encoding fusion 

network (DDFN) for infrared and visible image object 

detection. [15] proposed a novel adaptive object detection 

system (AdaDet) based on early-exit neural networks. [16] 

proposed a new probabilistic framework for object 

detection which is related to the Hough transform. 

3. Architecture Design and Key Innovations of 

MRS-YOLOv11 

The proposed model builds upon the robust framework 

of YOLOv11, a state-of-the-art evolution in the YOLO 

series renowned for integrating advanced architectural 

innovations such as C3K2 blocks, SPPF modules, and 

C2PSA attention mechanisms[17]. Mirroring its 

predecessors, YOLOv11 employs a three-stage hierarchical 

structure consisting of a Backbone for multi-scale feature 

extraction, a Neck for cross-layer feature fusion and 

enhancement, and a Head for object localization and 

classification prediction. To address specific challenges 

prevalent in complex scene understanding, such as 

preserving fine-grained details across scales and improving 

feature representation, we introduce targeted refinements to 

each stage. These modifications encompass: 1) replacing 

standard convolutions within the Backbone with novel 



 

 

RSConvFocus and RSConvDownsample modules, designed 

to optimize spatial information retention during critical 

downsampling operations;2) integrating MSFFusion  

blocks into the Neck to significantly enhance 

cross-resolution feature aggregation ， as shown in the 

overall model Figure 1. 

FIGURE 1. Overall Diagram of the MRS-YOLOv11 Model 

3.1. Receptive Field Enhanced Spatial Convolution 

(RSConv) 

To address the limitations of standard convolutional 

operations in handling multi-scale objects and preserving 

spatial information during downsampling, we propose a 

novel Receptive Field Enhanced Spatial Convolution 

(RSConv) architecture. This multi-path approach addresses 

the fundamental challenge of multi-scale object 

representation. By integrating parallel feature extractors 

with hierarchical receptive field coverage, the module 

overcomes the limitations of traditional single-branch 

convolutions that struggle with scale variation in complex 

environments.This module incorporates three key 

innovations: dynamic weight allocation,multi-branch 

dilated convolution,and spatial attention mechanisms. Refer 

to Figure 2 for details. 

Dynamic Weight Allocation Mechanism:The core 

innovation enabling adaptive feature fusion is the 

DynamicWeightAllocation module, which learns 

channel-wise weighting coefficients for feature aggregation. 

This submodule implements a dual-pooling attention 

mechanism defined as: 

𝒟𝒲𝒜(𝑥) = 𝜎 (𝒞1×1
2→1 (SiLU(𝒞1×1

2𝑐→𝑐/2[AvgPool(𝑥) ⊕ MaxPool(𝑥)]))) (1) 

Where⊕denotes channel-wise concatenation, 𝒞1×1
2→1 rep

resents pointwise convolution, and 𝜎 is the softmax act

ivation function. As shown in the implementation. This

 module first extracts complementary channel statistical

 features through parallel average pooling and max po

oling operations. Then, the concatenated features are di

mensionally reduced and compressed via a bottleneck c

onvolution with a compression ratio of 2. Next, a thre

e-dimensional weight vector is generated through softm

ax normalization. Finally, it dynamically adjusts the fea

ture contribution of different convolution branches. 

Multi-branch Dilated Convolution:The RSConv 

backbone integrates three parallel convolution pathways 

with progressively expanding receptive fields, embodying a 

design rationale that includes hierarchical receptive field 

coverage via 1×1, 3×3, and 5×5 effective kernels. It 

employs shared convolution parameters (such as kernel size 

and stride) across branches, coupled with automatic 

padding computation to maintain consistent feature 

dimensions. Batch normalization is further incorporated to 

ensure stable gradient propagation, enabling the module to 

effectively handle multi-scale feature extraction while 

preserving spatial information integrity. 

RSConvFocus with Spatial Attention:The RSConv 

framework enhances initial feature extraction through an 

attention-infused design that integrates multi-scale feature 

extraction via its RSConv backbone with a 7 × 7 

convolution for broad spatial context modeling. This is 

complemented by a sigmoid activation function to generate 

soft attention masks, which are then applied through 

element-wise multiplication to refine features and 

selectively amplify salient regions. By synergistically 

combining these components, the framework substantially 

improves multi-scale feature representation while 

maintaining computational efficiency. 
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3.2. Multi-Scale Feature Fusion Enhancement Module  

The Multi-Scale Feature Fusion (MSFFusion) module 

represents a sophisticated advancement in multi-scale 

feature integration within convolutional neural networks, 

incorporating three specialized components that operate 

synergistically to enhance feature representation: 

multi-scale feature extraction layers with hierarchical 

receptive fields, complementary channel and spatial 

attention mechanisms, and residual learning pathways for 

feature refinement. This architecture demonstrates 

particular efficacy in addressing feature misalignment 

across scales—a persistent challenge in multi-scale object 

detection that traditional frameworks often struggle to 

resolve. By harmonizing hierarchical feature extraction 

with attention-driven refinement, the module enables more 

coherent cross-scale feature aggregation, thereby improving 

detection performance for objects of varying sizes in 

complex scenes. Refer to Figure 3 for details. 

Multi-Scale Feature Extraction: The Scale Feature 

Aggregation component of the multi-scale feature 

extraction module implements parallel feature extraction 

pathways: a 1×1 convolution branch for local feature 

extraction and channel compression, a standard 3 × 3 

convolution with dilation=1 to capture medium-range 

spatial contexts, and a dilated 3×3 convolution with 

dilation=2 to extend the effective receptive field. Feature 

maps from these branches are concatenated and fused 

through a 1×1 convolution layer. This architecture enables 

comprehensive scale coverage while maintaining 

computational efficiency via strategic channel reduction in 

each branch, ensuring that the model can effectively handle 

objects of varying sizes without incurring excessive 

computational overhead. 

Dual-Attention Integration: Channel Attention 

Component implements dual-pooling excitation where both 

average-pooled and max-pooled features are processed 

through shared bottleneck layers (reduction ratio=8). The 

resultant channel attention weights are computed as: 

𝒞𝒜(x) = σ (𝒞1×1 (ReLU(𝒞1×1(AvgPool(x)))) +

                                        𝒞1×1 (ReLU(𝒞1×1(MaxPool(x)))))           (2) 

Spatial Attention Component constructs position-wise 

significance maps through depthwise convolution, 

preserving spatial relationships while reducing 

computational overhead. The spatial weighting function 

employs 3×3 depthwise convolution with channel-wise 

normalization and sigmoid activation, generating 

spatially-variant attention masks that dynamically adjust 

feature importance across the image plane. 

Residual Feature Refinement:The attention-weighted 

features are integrated with the original input through a 

residual pathway: 

Output = 𝒫(𝒲c ∘ 𝒲s ∘ MSFA(x)) + x            (3) 

Where   𝒫 denotes the projection convolution, 𝒲c 

represents channel attention weights, 𝒲s  denotes spatial 

attention weights,MSFA(x) signifies the multi-scale feature 

aggregation output, and ∘ indicates element-wise 

multiplication. This residual structure ensures stable 

gradient propagation while preventing information 

degradation during feature fusion. 

The forward propagation process implements a 

multi-stage feature integration framework: input features 

first undergo channel alignment via dimension-preserving 

convolution, followed by multi-scale feature extraction 

through parallel processing branches. Channel attention 

then recalibrates feature significance across channels, while 

spatial attention identifies and emphasizes positionally 

critical regions. The dual-attention weighted features are 

projected through a 1×1 convolution layer, and original 

features are preserved via skip connections. This residual 

learning pathway ensures feature fidelity while enabling 

progressive refinement of multi-scale representations, 

allowing the model to effectively balance contextual 

information and computational efficiency. 

This strategy synergistically combines dimensional 

consistency, scale diversity, and attention-driven feature 

selection, preventing information loss during multi-stage 

fusion. The integration of residual connections further 

stabilizes gradient flow, making it particularly suitable for 

tasks requiring fine-grained feature alignment across 

varying scales. 
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4. Experiments 

To further validate the detection performance of the 

MRS - YOLOv11 model in complex detection 

environments, this paper conducts performance testing on 

the self -built HELMET dataset. Additionally, comparative 

experiments with classic object detection algorithms are 

performed. 

Experimental Conditions: The operating system is 

Ubuntu 22.04, the deep learning framework is PyTorch 

1.9.0, the CPU is an Intel® Core™ i3 - 7350K, the memory 

is 16GB, the GPU is a GeForce RTX 3070 Ti, and the 

CUDA version is 11.1. 

TABLE 1. Experimental conditions 

Experimental conditions 

Operating system 
Deep learning 

framework CPU      Memory     GPU      CUDA 

Ubuntu 

22.04 
Pytorch 

1.9.0 

  Intel                  NVIDIA 

i3 - 7350K      16G     3070Ti    
CUDA11.1 

 

As shown in Table 1, to ensure the fairness of 

comparative experiments, both the MRS-YOLOV11 

algorithm and classical algorithms were tested on the 

helmet dataset containing 3 categories of objects. The 

dataset includes 4,500 training samples, 500 validation 

samples, and 25,502 target instances. The experiment was 

configured with 100 training epochs, a batch size of 8, 

using the SGD optimizer for training parameters, a learning 

rate of 0.01, and a momentum of 0.937. 

 

 

TABLE 2. Comparison of Experimental Results 

Model 

HELMET dataset. 

YOLOv5n      YOLOv8n       YOLOv11n       ours(MRS-YOLOv11) 

Map50(%) 61.7        62.5       63.3            64.2       
 

 

As shown in TABLE 2,the experimental results 

indicate that the MRS-YOLOv11model (ours) achieves a 

mAP50(%) of 64.2 on the HELMET dataset. It outperforms 

the YOLOv5n model by 2.5 percentage points, surpasses 

the YOLOv8n model by 1.7 percentage points, and exceeds 

the YOLOv11n model by 0.9 percentage points. These 

results demonstrate that the improvement strategies adopted 

in MRS - YOLOv11, namely the Receptive Field - 

Enhanced Spatial Convolution and the Multi - Scale 

Feature Fusion Enhancement Module, can effectively boost 

the model's detection performance, leading to more 

accurate detection results. 

FIGURE 4. Graph of Detection result 

As shown in Figure 4 ,the experimental results 

demonstrate that the model is capable of recognizing 

helmets and unhelmeted objects with high accuracy. This 

indicates that the incorporation of the Receptive 

Field-Enhanced Spatial Convolution and the Multi-Scale 

Feature Fusion Enhancement Module can improve the 

overall detection performance of the model. 

5. Conclusions 

The study successfully addresses key challenges in 

power system object detection through the MRS-YOLO 

framework. By integrating RSConv's hierarchical receptive 

field coverage and MSFFusion's attention-driven 

multi-scale fusion, the model significantly improves 

detection accuracy for small objects and complex scenes. 

Experimental results validate a 0.9–2.5% mAP50 gain 

over baseline YOLO variants, with robust performance in 

helmet detection tasks. The proposed innovations—context 

aggregation and dedicated small-object detection 

heads—demonstrate generalizability for industrial use cases 

requiring fine-grained feature alignment. Future work will 

explore lightweight deployment for edge devices and 

extension to multi-modal data to further enhance real-world 

applicability. 
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